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Modeling of Quantization Effects in Digitally Controlled DC-DC Converters
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Abstract—- 1n digitally controlled DC-DC converters with a
single voltage feedback loop, the two quantizers, namely the
A/D converter and the digital pulse-width modulator (DPWM),
can cause undesirable limit-cycle oscillations. In this paper,
static and dynamic models that include the quantization effects
are derived and used to explain the origins of limit-cycle
oscillations. In the static model, existence of DC solution, which
is a necessary no-limit-cycle condition, is examined using a
graphical method. A concept of amplitude and offset dependent
gain is introduced to extend the describing function method and
derive the dynamic system model. From the static and dynamic
models, no-limit-cycle conditions associated with A/D, DPWM
and compensator design criteria are derived. The conclusions
are illustrated by simulation and experimental examples.

L INTRODUCTION

Digitally controlled PWM converters have gained
increased attention because of a number of potential
advantages including lower sensitivity to parameter
variations, programmability, reduction or elimination of
external passive components, as well as possibilities to
implement more advanced control, calibration or protection
algorithms. It has been demonstrated that such advantages
can be realized without compromising dynamic performance,
simplicity or cost ([1], for example).

The increased interest in digital control motivates the
research in related design-oriented analysis and modeling
techniques. In particular, it is well known that a digitally
controlled PWM converter, a block diagram of which is
shown in Fig. ], may exhibit undesirable limit-cycle
oscillations because of the nonlinear elements,
analog-to-digital (A/D) and digital-to-analog (digital PWM)
quantizers, in the feedback loop [2, 3]. In general control
theory, limit cycle has been studied extensively [4-7]. For
PWM converters, some of the quantization effects and
no-limit-cycle conditions have been addressed in [2]. The
purpose of this paper is to intreduce more complete static and
dynamic models that take into account multiple nonlinearities
in the loop (A/D and DPWM quantizers), leading to a new set
of no-limit-cycle conditions as well as A/D, DPWM and
compensator design guidelines. In the static model, discussed
in Section I, a graphical method is used to examine existence
of a DC solution, which is a necessary no-limit cycle
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Fig. 1. Digitally controlled DC-DC switching power converter.
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Fig. 2. Quantizer characteristic.

condition. In Section III, we extend the describing function
[8] of a quantizer with a new concept of amplitude and offset
dependent gains of the quantizers. A dynamic model
including the effective quantizer gains is presented in Section
IV. Based on the approach described in [9], the dynamic
system model is used to predict the frequency and amplitude
of a near-sinusoidal limit-cycle oscillation if it does occur.
No-limit-cycle conditions are derived in Section V.
Simulation and experimental results are presented in Section
VI to illustrate the results from Sections 1I-V. Finally, for the
cases where the assumptions of the describing function
method are not met, Section VII gives a conservative bound
for the limit-cycle oscillation amplitude, while Section VIII
summarizes the conclusions.

iL. STATIC MODEL WITH A/D AND DPWM QUANTIZERS

In the system of Fig. |, we assume that quantization effects
in the digital compensator computation can be neglected, i.e.,
that sufficiently long words are used to compute the duty
cycle command d,. Under this assumption, the digitally
controlled converter of Fig. 1 includes two quantizers: the
A/D converter and the DPWM, which serves as a D/A
converter. The digital error signal e at the A/D output is
obtained by quantization of the analog error voltage
v, = V,or— v, while the duty cycle 4 at the DPWM output is
obtained by quantization of the duty cycle command 4.
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Fig. 3. Graphical solution of the static model for the digitally controlled
converter of Fig. 1, for three DC compensator gains G,: (a) small G,

(b) large G, and (¢) G, >0 .

The characteristic of a quantizer having a continuously
varying input x and an output y = Q(x) is illustrated in Fig. 2.
The range of x is divided into bins of width ¢, where ¢ is the
“quantization level,” or the value of the quantizer’s least
significant bit (LSB). For x in the ¥" bin, the output y equals
the &* discrete output value (v = kg). Based on this quantizer
definition, we note that a quantizer with very high resolution
(g — 0) behaves as a linear block having a gain of 1.

To examine quantization effects in the system of Fig, 1, it
is first necessary to develop a static model and 1o establish
conditions for existence of a DC solution. This task has been
accomplished in [2, 3]. In this section we give an additional
explanation and graphical interpretation of the main results.

The system DC solution can be obtained graphicaily as the
intersection of the A/D quantization characteristic,

e=0yp(v,), 1)
and the system static characteristic through the DPWM,
v,=V,-v=¥,-Gd
=V = G Qpnai () = V,p = G,.Q0pmae(Gu€)s

where G, 1s the DC control-to-output gain of the converter,
and G, is the DC gain of the compensator, d. = G,.e. Since
the quantizer cutput are discrete values, an intersection of the
two curves that resides at the transition from one output level
to another output level means that there is no DC solution to
the system. The graphical solution is illustrated in Fig. 3 for
three cases of the compensator gain:

(a) if the compensator gain is relatively small, a DC
solution may or may not exist. As an example, Fig. 3(a)
shows a stable DC solution at point A;

(b) for sufficiently large DC compensator gain,

V. —-05q9,., X

Gro > ref

GoGain

the intersection is a point B on the 0-to-1 LSB transition of

the A/D characteristic. We conclude that in this case a stable

DC solution does not exist and the system always exhibits
limit-cycle oscillations;

(c) for infinitely large DC gain, ie., when an integral

compensator is employed, the curve corresponding to (2)

reduces to discrete points on the v, axis. A DC solution of the

@
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system exists when at least one of these points resides in the
zero error bin of A/D characteristic, such as the point C in
Fig. 3(c). Existence of a DC solution is guaranteed provided
that the DPWM resolution is sufficiently high, i.e., provided
that;

G, 9orwm < 9aips )

where gpssiand g, are the LSB values of the DPWM and the
A/D converter, respectively. This last conclusion is
consistent with the basic no-limit-cycle conditions
formulated in [2,3]. In the rest of the paper, we assume that an
integral compensator is employed and that the static
no-limit-cycle condition (5) is satisfied.

I11. DESCRIBING FUNCTIONS OF THE QUANTIZERS

The describing function method [8] is an approximate
analysis method for nonlinear systems, where a nonlinear
element is replaced by an amplitude (and/or frequency)
dependent transfer function. Successful applications of the
describing function method rely on the assumption that the
signals at the quantizer inputs are approximately sinusoidal.
In this section we address the derivation of the describing
functions for the two quantizers, the A/D converter and the
DPWM.

Consider a quantizer having the characteristic y = Q(x)
illustrated in Fig. 2, and suppose that the input signal is
sinusoidal:

x(t) = a cos{ax), &)
The Fourier series expansion of the output 3(¥) is:
¥t =a, +a, cos(ax)+...+ a, cos(kax) +..., 6
The describing function Ma) of the quantizer is [8):
Na)=2L. )
a

In all cases considered here, the describing function is
independent of frequency. Therefore, we can say that the

1.4
Na
1.2 \
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Fig. 4. Describing function of a quantizer when the DC offsctis £=0,
i.e., the DC valuc of the input sinusoidal signal matches the midpoint of 2
quantization bin.
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describing function N(a) in (7) represents the effective
amplitude-dependent gain of the quantizer.

Figure 4 shows the textbook result for the describing
function Ma) of a quantizer. Notice that the maximum
effective gain of 4/7= 1.27 is obtained fora=q/1/§, and

that N¥(a) approaches 1 for a>>g.

We have found that the textbook definition based on (5)-(7)
is not sufficient to develop a complete dynamic model for the
system of Fig. 1. A key new concept introduced here is that
the describing function of a quantizer in Fig. 1 depends not
only on the amplitude @ of the assumed sinusoidal input
signal, but also on the input signal DC offset & with respect to
the mid-point of a quantization bin. Assuming that

x(t) = £+ acos{ar), (8)

the Fourier series expansion of the output »(f) has the same
form as in (6), and the amplitude and offset dependent
describing function N(a, &) is again defined by (7).

It is important to note that the amplitude and offset
dependent gain of a quantizer can be significantly greater
than 1 as the offset £ approaches ¢/2. In the worst case,
&£=g/2, the input sinusoidal signal is centered at the
transition point of the quantizer. Figure 5 shows an example
of the input and output waveforms in this situation, for a
quantizer with g = 1. Since the input signal with an arbitrarily
small amplitude can produce the output with a non-zero
amplitude, the quantizer with the input signal having the
offset &£ = ¢/2 can exhibit an infinitely large gain. Figure 6
shows the describing functions N(a, £) for several different
values of the offset £

Let us consider the A/D converter. Because of the assumed
integral action (i.e. infinite DC gain) of the compensator, the
steady-state DC value of the A/D output must be equal to
zero. Therefore, if a sinusoidal limit-cycle oscillation exists
at the A/D input, this oscillation must have a zero DC offset,
gup=10. We conclude that the traditional zero-offset
describing function can be used to model the A/D converter.
The offset gppwyr at the input of the DPWM quantizer,
however, can be arbitrary, and we have to include the
possibility of the worst-case offset gnppur = gppwys2 in the
model. The observation that the DPWM can contribute an
effective gain much larger than 1 has important consequences
in the construction of the system dynamic model and
derivation of additional no-limit-cycle conditions.

IV. DYNAMIC MODEL AND EXISTENCE OF SINUSOIDAL
LIMIT-CYCLE OSCILLATIONS

Denote the converter power stage transfer function as
G.As), and the continuous-time equivalent of the
compensator transfer function as G.(s). Figure 7 shows a
dynamic model for the system of Fig. 1 where the two
quantizers are repiaced by the amplitude and offset
dependent effective gains. Using the model of Fig. 7, and the
describing functions of Section 111, existence, frequency and
amplitude of a sinusoidal limit-cycle oscillation can be
obtained using the approach described in [3].

Let 7;(s) be the linear part of the loop gain, which does not
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Fig. 5. Small amplitude sinuscidal signal becomes square wave signal
with much bigger amplitude when the DC offset £of the input sinusoidal
signal matches the transition point (0.54) between two quantization bins.
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Fig. 6. Describing function of a quantizer for several different values of
the offsct &

include the quantizers,
T,(s)=G,(5)G ,(s) &)

As discussed in Section III, the describing functions of the
quantizers in Fig. 1 are independent of frequency, and do not
introduce a phase shift between the input sinusoidal signal
and the fundamental of the output signal. Therefore, from
linear system theory, if a limit-cycle oscillation exists, the

oscillation frequency f£; is such that:
£T, (jw,)=—180° (10)

Suppose that the signal v, at the input of the A/D is a.

Switching converter
v
G,.L5) >
DPWM Compensator A/D
N, L— G(s) —| N Y
= Yorn a. - Ap v, +

Fig. 7. Dynamic system model.
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Fig. 8. Simulink model.

Then, at the frequency f;, the magnitude of the
amplitude/offset-dependent system loop gain 7{(a,&ppuay) can
be found as follows:

T(a,&ppmy ) = 5%%%
= "Gva’ (jwr )"
"N ppwr QGC(jmx)”NAiD(a’O)a!EDPWM) b
|GG
N yp(a,0)
[f there exists an amplitude 4, and an offset & such that
Ta. &)=1 (12)
and
6T(a,£x) <0 (13)
da

a near-sinusoidal limit-cycle oscillation of amplitude g, and
frequency f, will occur in the system, Equations (10) and (12)
are the standard oscillation conditions, while (13) is refated to
the stability of the oscillation. If, for example, the amplitude a
drops below a,, (13) implies that the loop-gain magnitude
increases above 1, which implies that a will increase towards
the equilibrium a = a,.

V. NO-LIMIT-CYCLE CONDITIONS AND DESIGN
GUIDELINES

The models of Section II, III and IV can be used to
formulate no-limit-cycle conditions and design guidelines
related to the selection of the A/D and DPWM resolutions
and the compensator design.

A, Static condition

A necessary no-limit-cycle condition is that a DC solution
exists, According to the discussion in Section II, a DC
solution is guaranteed to exist provided that an integral
compensator is employed, and that the DPWM resolution is
sufficiently high,

(14)

where G, is the DC duty-cycle-to-output gain and o can be as
high as 1. In practice, to ensure a design margin, a smaller o
is recommended (ot = 0.5 has been suggested in [2]).

G 9prms <Cqgp»
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B. Dvynamic condition

A dynamic no-limit-cycle condition follows from the
discussion in Sections 11l and [V. Let f; be a frequency where
(10) is satisfied, i e., a frequency where the phase response of
the linear part of the system loop gain equals —180°. The
dynamic no-limit-cycle condition is:

(13)

for all @ > q4,/2 and 0 < gppmyr < qppwasd2, where a is the
amplitude of the signal v, at the A/D input, and T(a, &ppwa) is
the magnitude of the amplitude/offset-dependent system loop
gain computed from (11).

The condition (13) is related to the gain margin of the
linear part of the system. For large signal amplitude
a>> gup, the system loop gain magnitude (11) gives the gain
margin GM; of the linear part of the system:

GM,[dB] = —2010g|T (@, £5pp)

T(a, £ ppuny) < 1

(16)

Lege i )'

Note that the condition (15) requires that the linear part of the
system is stable, i.e., that the gain margin G/, is positive. In
addition, the condition (15) captures gain effects of the
quantizers in terms of the amplitude @ and the offset gpppps.

The general dynamic no-limit-cycle condition (15) leads to
two simple no-limit-cycle conditions in terms of the A/D and
DPWM resolutions, and the converter and controller
responses.

- B.1 The worst-case (infinite) DPWM gain, which occurs for

Eppwm = qopwa2, is canceled by the zero gain of the A/D for
signal amplitudes @ < ¢4p/2:
%“Gvd(ij)HqDFWM <4up an
Very large effective DPWM gain is a result of a very small
amplitude signal at the DPWM input around the worst-case
offset eppwm = gppuad2. In this case, the DPWM output is a
square wave of amplitude gppwy, and (2/7)gppwy is the
amplitude of the corresponding fundamental at f,. The
dynamic condition B.1 {Eq. (17)) is the condition that the
resulting amplitude  at the A/D input is smaller than g,,p/2.

B.2 The gain margin GM; of the linear part of the system is
sufficiently high:
2

GM, > 20 [og[%) =42dB- (18)
If a signal at the DPWM output oscillates between only two
adjacent quantization levels, the no-limit-cycle condition B.1
applies. If the DPWM output steps over three or more levels,
the effective DPWM gain cannot be greater than 4/7, for any
&ppwy Similarly, the effective A/D gain cannot be greater
than 4/x, as discussed in Section 111, Therefore, under the
assumption that the signal at the DPWM output spans over
more than two quantization levels, the combined DPWM and
A/D gain cannot exceed (4/7)" = 1.62, which gives the
no-limit-cycle condition B.2 (Eq. (18)).
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Together, the conditions B.1 and B.2 imply the general
dynamic no-timit-cycle condition (15). These conditions
have not been reported earlier.

Note that the conditions A4 and B.1 clearly indicate the need
for a high-resolution DPWM, while the conditions 4 and B.2
have direct implications on the compensator design — the
compensator must include an integral action (as reported
earlier in [2]), and must result in sufficiently large gain
margin of the linear part, The condition B.1 originates from
the fact that the DPWM can provide large effective gain, but
the realization of the high gain depends on the DC offset and
the amplitude of the signal at the DPWM input, which do not
always occur. As a result, not satisfying the no-limit-cycle
condition B.1 does not necessarily lead to a persistent limit
cycle oscillation as long as there is a DC solution to the
system.

The relative importance of the no-limit-cycle conditions
established in this section depends on the particular
application. In all cases, to avoid limit-cycle oscillations, the
static condition 4 (Eq. (14)} must be satisfied. In applications
with a relatively fast controller, the frequency £, in (10) is
relatively high, and the condition B.1 (Eq. (17)) is likely to
be satisfied whenever the static condition 4 is met. In this
case, in addition to the condition 4, the condition B.2 must be
taken into account. However, this is not the case in
applications with a relatively slow integral compensator,
where the condition B.1 can be very important, as illustrated
in the next section.

VI SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present several examples to illustrate the
results of Sections 11-V.

A.  Simulation example: no-limit-cycle condition B.2
Simulink model of a digitally controlled buck converter
used in the simulation examples is shown in Fig. 8. The
converter parameters are: L=10pH, C=10pF, R=1Q,
Vie=5V, Ve = 2.5V, f;= | MHz. An integral discrete-time

compensator is applied,
Gy =

(19)
1-2"

The integral compensator provides a phase lag of 90°
Therefore, the frequency £, where (10} is met is

=15.9kHz. 20)

1

f x f o 2]1' “/E
With K, =0.016, the gain margin of the linear part is very
small, but the system without quantizers is stable. When an
A/D quantizer with g4p = 0.2 V is added, the system violates
the condition B.2, and a limit cycle oscillation cccurs, even
when gpppay is still very small. Signal waveforms v, at the
A/D input and e at the A/D output are shown in Fig. 9. The
A/D input signal amplitude is around 0.75g.n, which
corresponds to the effective A/D gain of approximately 1.2 in
Fig. 4. The oscillation frequency obtained by simulation is

Aachen, Germany, 2004
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Fig. 9. Steady-state waveforms v, at the A/D input and e at the A/D
output in the exampie of Section VI.A4.

very close to f;.

B.  Simulation example: no-limit-cycle condition B.1

In this example, the Simulink model of Fig. § is applied
with the following parameters for the buck converter:
L=10pH, C=10pF, R=5Q, V, =5V, V., =2505V,
f.,=1MHz. The integral discrete-time compensator (19) is
used, with X, = 0.0002. The A/D quantizer has g, = 0.02 V,
and the DPWM quantizer has gppuss = 0.002. The frequency
[ is again given by (20). The gain margin of the linear part is
GM, =26dB. This system satisfies all no-limit-cycle
conditions in [2]. Figure 10 shows that a limit-cycle
oscillation occurs as a result of violation of the condition B.1:
the DPWM input and output waveforms clearly illustrate the
large effective gain of the DPWM. If the DPWM
quantization level is reduced to gppwy = 0.0005, which
satisfies the condition B.1, the limit cycle oscillation
disappears. It is of interest to examine the plots of the
magnitude loop gain T(4, &pewar) computed from (11) as a
function of the signal amplitude a, for the worst-case offset
Eppwr = 4qppwr2. The results are shown in Fig. 11 for
gppwy = 0.002, and for gppwar = 0.0005. For gppis= 0.002,
there is an amplitude a = a, = 0.032 V such that (12) and (13)
are met. This oscillation amplitude predicted by the dynamic
model of Section IV is very close to the v, signal amplitude
obtained by simulation as shown in Fig. 10. For
gopuwy = 0.0005, I(a, gppuy) <1 for all a, the no-limit cycle
condition (15) is met, and no limit cycle oscillations occur.

C. Experiment: no-limit-cycle condition B. 1

An experiment similar to the simulation example of
Section B is performed using the experimental digitally
controlled buck converter shown in Fig, 12 [11]. The buck
converter parameters are L=10puH, C=10pF,
Vi =3313V, V, = 13V, f;=1 MHz. Note that the A/D
converter consists of only two comparators, The A/D
converter characteristic is shown in Fig. 13{a), together with
the corresponding describing function in Fig. 13(b). Instead
of the fast P1D compensator described in [11], the controller
is programmed to operate as a slow integral compensator (19),
with K, = 1.26 x 10”. The 6-bit feed-forward DPWM with
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Fig. 10. Top: waveforms v, and e before and after A/D quantization.
Bottom: duty-cycle command d. at the DPWM input, and the quantized
duty-cycle command d in the example of Section VLB.

additional 3 bits added by duty-cycle dithering results in
Viegopwu=5mV. The A/D quantization level is
g4n = 50 mV. Because of the high switching frequency, the
duty-cycle dithering contributes a very small additional
ripple in the output voltage, well within the zero-error bin of
the A/D converter. As in the simulation examples of Sections
A and B, the frequency f, given by (20) is 15.9 kHz.

Since ||G.jo}l = Vi@, where @ = RJC{L (neglecting
losses), the gain margin of the linear part of the system
depends on the load resistance R. For example, for a load of
R=10Q, GM; = 27.6 dB. We tested a range of load transient
responses. Figure 14 shows the waveforms for the case when
the Joad current changes periodically from 160mA to 390mA,
which corresponds to a load resistance change from 8 Q to
3.3 £, respectively. For R = § (2, the no-limit-cycle condition
B.1 is not satisfied, and near-sinusoidal limit cycle
oscillations at the frequency of approximately f, can be
observed in the output voltage and the A/D signals x and y.
For R=3.3 Q, Q is reduced and the no-limit-cycle condition
B.1 is satisfied. For this load, no limit cycle oscillations
occur, as illustrated by the waveforms of Fig. 14.

VII. NON-SINUSOIDAL LIMIT CYCLING

The dynamic model of Sections 1II and IV, and the
no-limit-cycle conditions of Section V.B are based on the
assumption of near-sinusoidal limit cycle oscillation. Under
this assumption, if a limit cycle exists, the oscillation
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Fig. 11. Magnitude loop gain T{a, sorws) at f; for two DPWM
quantization levels gppwa in the example of Section VLS.
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Fig. 12. Experimental digitally-controlled 1 MHz buck converter [11].
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Fig. 13. Characteristic {a) and the describing function (b) of the A/D
converter in Fig. 12.

amplitude and frequency can be inferred from the model in
Section [V, with ilfustrative examples shown in Section V. It
is important to note that even when all conditions of
Section V. are satisfied, non-sinusoidal limit-cycle
oscillations may still occur, especially if o in (14) is close to
1, or if the gain margin is close to the limit in (18). In such
cases, the DFWM output may swing between two adjacent
levels, but with a more complicated oscillation pattern. It is
then of interest to find a bound on the limit cycle oscillation
amplitude in the output voltage. For an arbitrary signal
pattern consisting of two adjacent DPWM levels, a beund for
the signal amplitude at the output can be found from linear
system theory as the induced L. norm, which can be
computed as the L; norm of the system impulse
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Fig. 14. Experimental waveforms in the example of Section VI.C;
Chl: load current i, [200mA/div], Ch2: ac~coupled cutput voltage v,

Ch3: A/D comparater output y, Chd: A/D comparator output x.

response [10]. As an example, for a buck converter having
the control-to-output transfer function:

v,
Gouls) = —2——

s3]
1+ +| —
Qa)o 12

the impulse response of which is g{r), we have the following
bound:

@D

" 2

16.d].... =lel, = fletofar < s ——

’ - l~e_‘!T'J?
Assuming, as has been observed in simulations and

experiments, that the DPWM output signal has the amplitude

equal to gppwr, we have a conservative bound for the

amplitude of the limit-cycle oscillation at the output:

max(Vlimil_cycle) < “Gvd "w_,,, 9 ppwn
80* 1
407 -1 L
0 I-e ;]4Q24
In practice, the result (23) can be used to find the
worst-case effect of the oscillation on the output voltage,
regardless of the origin of the oscillation. It should be noted
that (23) is a conservative result. We note again the
importance of a high-resolution DPWM having small
quantization level gpppy, for practical realization of digitally
controlled switching power converters. A comprehensive

survey of high-frequency, high-resolution DPWM
realizations can be found in [12).

22

(23)

< in DM

VIIL

This paper presents static and dynamic models of digitally
controlled PWM converters including quantization effects.
The models include two quantizers, an A/D converter and a
digital PWM (DPWM). In the static model, a graphical
methed is used to conclude that the existence of a DC
solution, which is a necessary no-limit-cycle condition, can
be guaranteed if the compensator includes integral action and

CONCLUSIONS
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if the DPWM resolution is sufficiently high. When the DC
loop gain is large but not infinite, no DC solution exists and a
limit cycle oscillation will happen. A dynamic model
including quantization effects is derived using the describing
function method. A concept of amplitude and offset
dependent gain is introduced to complete the quantizer
models. Under the assumption of sinusoidal signals, the
dynamic system model can be used to predict the oscillation
frequency and amplitude, if a limit cycle exists, and to
establish no-limit-cycle conditions in terms of the A/D
resolution, DPWM resolution, and the gain margin, For cases
when the sinusoidal signal approximation is not met, we have
found bounds for the amplitude of oscillations if a limit cycle
exists.

The ne-limit-cycle conditions and the amplitude bounds
results point to the importance of high-resolution DPWM
designs in practical realizations of digitally controlled
switching power converters.
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