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Abstract—In digitally controlled dc–dc converters with a
single voltage feedback loop, the two quantizers, namely the
analog-to-digital (A/D) converter and the digital pulse-width
modulator (DPWM), can cause undesirable limit-cycle oscilla-
tions. In this paper, static and dynamic models that include the
quantization effects are derived and used to explain the origins of
limit-cycle oscillations. In the static model, existence of dc solution,
which is a necessary no-limit-cycle condition, is examined using a
graphical method. Based on the generalized describing function
method, the amplitude and offset-dependent gain model of a
quantizer is applied to derive the dynamic system model. From the
static and dynamic models, no-limit-cycle conditions associated
with A/D, DPWM and compensator design criteria are derived.
The conclusions are illustrated by simulation and experimental
examples.

Index Terms—DC–DC power conversion, digital control, digital
pulse-width modulator (DPWM), quantization.

I. INTRODUCTION

DIGITALLY controlled pulsewidth modulation (PWM)
converters have gained increased attention because of a

number of potential advantages including lower sensitivity to
parameter variations, programmability, reduction or elimina-
tion of external passive components, as well as possibilities to
implement more advanced control, calibration, or protection
algorithms. It has been demonstrated that such advantages
can be realized without compromising dynamic performance,
simplicity, or cost [1].

The increased interest in digital control motivates the
research in related design-oriented analysis and modeling
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Fig. 1. Digitally controlled dc–dc switching power converter.

techniques. In particular, it is well known that a digitally con-
trolled PWM converter, a block diagram of which is shown
in Fig. 1, may exhibit undesirable limit-cycle oscillations
because of the nonlinear elements, analog-to-digital (A/D) and
digital-to-analog (DPWM) quantizers, in the feedback loop
[2], [3]. In general control theory, limit cycle has been studied
extensively [4]–[7]. For PWM converters, the quantization
effects and no-limit-cycle conditions have been addressed in
[2]. The purpose of this paper is to introduce more complete
static and dynamic models that take into account multiple
nonlinearities in the loop (A/D and DPWM quantizers), leading
to a more complete set of no-limit-cycle conditions as well as
A/D, DPWM, and compensator design guidelines. In the static
model, discussed in Section II, a graphical method is used
to examine existence of a dc solution, which is a necessary
no-limit cycle condition. In Section III, we show how the
generalized describing function [13] of a quantizer provides
an amplitude and offset-dependent “gain” model capable of
capturing high-gain effects. A dynamic model including the
effective quantizer “gains” is presented in Section IV. Based
on the approach described in [9], the dynamic system model is
used to predict the frequency and amplitude of a near-sinusoidal
limit-cycle oscillation, if it does occur. No-limit-cycle condi-
tions are derived in Section V. Simulation and experimental
results are presented in Section VI to illustrate the results from
Sections II–V. Finally, for the cases where the assumptions of
the describing function method are not met, Section VII gives
a conservative bound for the limit-cycle oscillation amplitude,
while Section VIII summarizes the conclusions.

II. STATIC MODEL WITH A/D AND DPWM QUANTIZERS

In the system of Fig. 1, we assume that quantization effects
in the digital compensator computation can be neglected, i.e.,
that sufficiently long words are used to compute the duty cycle
command . Under this assumption, the digitally controlled
converter of Fig. 1 includes two quantizers: the A/D converter
and the DPWM, which serves as a D/A converter. The digital
error signal at the A/D output is obtained by quantization of
the analog error voltage , while the duty cycle at
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Fig. 2. Quantizer characteristic.

the DPWM output is obtained by quantization of the duty cycle
command .

The characteristic of a quantizer having a continuously
varying input and an output is illustrated in Fig. 2.
The range of is divided into bins of width , where is
the “quantization level,” or the value of the quantizer’s least
significant bit (LSB). For in the th bin, the output equals
the th discrete output value . Based on this quantizer
definition, we note that a quantizer with very high resolution
( 0) behaves as a linear block having a gain of 1.

To examine quantization effects in the system of Fig. 1, it is
first necessary to develop a static model and to establish condi-
tions for existence of a dc solution. This task has been accom-
plished in [2] and [3]. In this section, we give an additional ex-
planation and graphical interpretation of the main results.

The system dc solution can be obtained graphically as the
intersection of the A/D quantization characteristic

(1)

and the system static characteristic through the DPWM

(2)

where is the dc control-to-output gain of the converter, and
is the dc gain of the compensator, . Since the

quantizer output are discrete values, an intersection of the two
curves that resides at the transition from one output level to
another output level means that there is no dc solution to the
system. The graphical solution is illustrated in Fig. 3 for three
cases of the compensator gain:

a) if the compensator gain is relatively small, a dc solution
may or may not exist. As an example, Fig. 3(a) shows a
stable dc solution at point A;

b) for sufficiently large dc compensator gain

(3)

the intersection is a point B on the 0-to-1 LSB transition
of the A/D characteristic. We conclude that in this case
a stable dc solution does not exist and the system always
exhibits limit-cycle oscillations;

Fig. 3. Graphical solution of the static model for the digitally controlled con-
verter of Fig. 1, for three dc compensator gains G : (a) small G ; (b) large
G ; and (c) G ! 1.

c) for infinitely large dc gain, i.e., when an integral com-
pensator is employed, the curve corresponding to (2) re-
duces to discrete points on the axis. A dc solution of the
system exists when at least one of these points resides in
the zero error bin of A/D characteristic, such as the point C
in Fig. 3(c). The existence of a dc solution is guaranteed
provided that the DPWM resolution is sufficiently high,
i.e., provided that

(4)

where and are the LSB values of the
DPWM and the A/D converter, respectively. This last
conclusion is consistent with the basic no-limit-cycle
conditions formulated in [2], [3]. Related to the condi-
tion (4), one should note that an ideal high-resolution
DPWM with 0 does not necessarily guarantee
the existence of a dc solution. Since the error signal
is quantized, the duty-cycle command at the output
of the compensator is also quantized, with an effective
quantization level . To guarantee the existence of a dc
solution, the quantization level at the compensator output
must meet the same condition as in (4)

(5)

Assuming the compensator includes an integral action
with integral gain , we have , and (5)
becomes

(6)

which gives an upper limit for the allowed integral . A
similar argument about the limit on the maximum allowed
integral gain can be found in [2]. In the rest of the paper,
we assume that an integral compensator is employed and
that the static no-limit-cycle conditions (4) and (5) are
satisfied.

III. DESCRIBING FUNCTIONS OF THE QUANTIZERS

The describing function method [8], [13] is an approximate
analysis method for nonlinear systems, where a nonlinear ele-
ment is replaced by an amplitude (and/or frequency) dependent
“transfer function.” Successful applications of the describing
function method rely on the assumption that the signals at the
quantizer inputs are approximately sinusoidal. In this section we
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Fig. 4. Describing function of a quantizer when the dc offset is " = 0, i.e., the
dc value of the input sinusoidal signal matches the midpoint of a quantization
bin.

address the derivation of the describing functions for the two
quantizers, the A/D converter and the DPWM.

Consider a quantizer having the characteristic il-
lustrated in Fig. 2, and suppose that the input signal is sinusoidal

(7)

The Fourier series expansion of the output is

(8)

The describing function of the quantizer is [8], [13]

(9)

In all cases considered here, the describing function is indepen-
dent of frequency. Therefore, we can say that the describing
function in (9) represents the effective amplitude-depen-
dent gain of the quantizer.

Fig. 4 shows the textbook result for the describing function
of a quantizer. Notice that the maximum effective gain

of 4 1.27 is obtained for , and that ap-
proaches 1 for . Unfortunately, the simplest textbook def-
inition based on (7)–(9) is not sufficient to develop a complete
dynamic model for the system in Fig. 1. A key concept is that
the describing function of a quantizer in Fig. 1 depends not only
on the amplitude of the assumed sinusoidal input signal, but
also on the input signal dc offset with respect to the mid-point
of a quantization bin [13]. Assuming that

(10)

the Fourier series expansion of the output has the same form
as in (8), and the amplitude and offset dependent describing
function is again defined by (9).

It is important to note that the amplitude and offset depen-
dent “gain” of a quantizer can be significantly greater than 1
as the offset approaches 2. In the worst case, 2,
the input sinusoidal signal is centered at the transition point of
the quantizer. Fig. 5 shows an example of the input and output

Fig. 5. Small amplitude sinusoidal signal becomes square wave signal with
much bigger amplitude when the dc offset " of the input sinusoidal signal
matches the transition point (0.5q) between two quantization bins.

Fig. 6. Describing function of a quantizer for several different values of the
offset ".

waveforms in this situation, for a quantizer with 1. Since the
input signal with an arbitrarily small amplitude can produce the
output with a non-zero amplitude, the quantizer with the input
signal having the offset 2 can exhibit an infinitely large
effective “gain.” Fig. 6 shows the describing functions
for several different values of the offset .

Let us consider the A/D converter. Because of the assumed
integral action (i.e., infinite dc gain) of the compensator, the
steady-state dc value of the A/D output must be equal to zero.
Therefore, if a sinusoidal limit-cycle oscillation exists at the
A/D input, this oscillation must have a zero dc offset,
0. We conclude that the traditional zero-offset describing func-
tion can be used to model the A/D converter. The offset
at the input of the DPWM quantizer, however, can be arbitrary,
and we have to include the possibility of the worst-case offset

2 in the model. The observation that the
DPWM can contribute an effective “gain” much larger than 1
has important consequences in the construction of the system
dynamic model and the derivation of additional no-limit-cycle
conditions.
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Fig. 7. Dynamic system model.

IV. DYNAMIC MODEL AND EXISTENCE OF SINUSOIDAL

LIMIT-CYCLE OSCILLATIONS

Denote the converter power stage transfer function as ,
and the continuous-time equivalent of the compensator transfer
function as . Fig. 7 shows a dynamic model for the system
of Fig. 1 where the two quantizers are replaced by the ampli-
tude and offset dependent effective “gains.” Using the model
of Fig. 7, and the describing functions of Section III, existence,
frequency and amplitude of a sinusoidal limit-cycle oscillation
can be obtained using the approach described in [5].

Let be the linear part of the loop gain, which does not
include the quantizers

(11)

As discussed in Section III, the describing functions of the quan-
tizers in Fig. 1 are independent of frequency, and do not in-
troduce a phase shift between the input sinusoidal signal and
the fundamental of the output signal. Therefore, from linear
system theory, if a limit-cycle oscillation exists, the oscillation
frequency is such that

(12)

Suppose that the amplitude of the signal at the input of
the A/D is . Then, at the frequency , the magnitude of the
amplitude/offset-dependent system “loop gain”
can be found as

(13)

If there exists an amplitude and an offset such that

(14)

and

(15)

a near-sinusoidal limit-cycle oscillation of amplitude and fre-
quency will occur in the system. Equations (12) and (14) are
the standard oscillation conditions, while (15) is related to the
stability of the oscillation. If, for example, the amplitude drops

below , (15) implies that the loop-gain magnitude increases
above 1, which implies that will increase towards the equilib-
rium .

V. NO-LIMIT-CYCLE CONDITIONS AND DESIGN GUIDELINES

The models of Sections II–IV can be used to formulate
no-limit-cycle conditions and design guidelines related to the
selection of the A/D and DPWM resolutions and the compen-
sator design.

A. Static Condition

A necessary no-limit-cycle condition is that a dc solution ex-
ists. According to the discussion in Section II, a dc solution is
guaranteed to exist provided that an integral compensator is em-
ployed, that the integral gain is sufficiently low according to
(6), and that the DPWM resolution is sufficiently high

(16)

where is the dc duty-cycle-to-output gain and can be as
high as 1. In practice, to ensure a design margin, a smaller is
recommended ( 0.5 has been suggested in [2]).

B. Dynamic Condition

A dynamic no-limit-cycle condition follows from the discus-
sion in Sections III and IV. Let be a frequency where (12)
is satisfied, i.e., a frequency where the phase response of the
linear part of the system loop gain equals 180 . The dynamic
no-limit-cycle condition is then

(17)

for all 2 and 0 2, where
is the amplitude of the signal at the A/D input, and

is the magnitude of the amplitude/offset-depen-
dent system “loop gain” computed from (13).

The condition (17) is related to the gain margin of the linear
part of the system. For large signal amplitude , the
system loop gain magnitude (13) gives the gain margin
of the linear part of the system

(18)

Note that the condition (17) requires that the linear part of
the system is stable, i.e., that the gain margin is positive.
In addition, the condition (17) captures the “gain” effects of the
quantizers in terms of the amplitude and the offset .

The general dynamic no-limit-cycle condition (17) leads to
two simpler no-limit-cycle conditions in terms of the A/D and
DPWM resolutions, and the converter and controller responses.

B.1 The worst-case (infinite) DPWM gain, which occurs
for 2, is canceled by the zero gain of
the A/D for signal amplitudes 2

(19)

Very large effective DPWM “gain” is a result of a very
small amplitude signal at the DPWM input around the
worst-case offset 2. In this case, the
DPWM output is a square wave of amplitude , and
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2 is the amplitude of the corresponding fun-
damental at . The dynamic condition B.1 [(19)] is the
condition that the resulting amplitude at the A/D input is
smaller than 2.
B.2 The gain margin of the linear part of the system
is sufficiently high

(20)

If a signal at the DPWM output oscillates between only
two adjacent quantization levels, the no-limit-cycle condi-
tion B.1 applies. If the DPWM output steps over three or
more levels, the effective DPWM gain cannot be greater
than 4 , for any . Similarly, the effective A/D
“gain” cannot be greater than 4 , as discussed in Sec-
tion III. Therefore, under the assumption that the signal at
the DPWM output spans over more than two quantization
levels, the combined DPWM and A/D “gain” cannot ex-
ceed 4 1.62, which gives the no-limit-cycle condi-
tion B.2 [see (20)].

Together, the conditions B.1 and B.2 imply the general dy-
namic no-limit-cycle condition (17). These conditions have not
been reported earlier.

Note that the conditions A and B.1 clearly indicate the need
for a high-resolution DPWM, while the conditions A and B.2
have direct implications on the compensator design—the com-
pensator must include an integral action with a limited integral
gain (as reported earlier in [2]), and must result in sufficiently
large gain margin of the linear part. The condition B.1 originates
from the fact that the DPWM can provide large effective “gain,”
but the realization of the high gain depends on the dc offset and
the amplitude of the signal at the DPWM input, which do not
always occur. As a result, not satisfying the no-limit-cycle con-
dition B.1 does not necessarily lead to a persistent limit cycle
oscillation as long as there is a dc solution to the system.

The relative importance of the no-limit-cycle conditions es-
tablished in this section depends on the particular application. In
all cases, to avoid limit-cycle oscillations, the static condition A
[(16), together with (6)] must be satisfied. In applications with
a relatively fast controller, the frequency in (12) is relatively
high, and the condition B.1 [see (19)] is likely to be satisfied
whenever the static condition A is met. In this case, in addition
to the condition A, the condition B.2 must be taken into account.
However, this is not the case in applications with a relatively
slow integral compensator, where the condition B.1 can be very
important, as illustrated in the next section.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present several examples to illustrate the
results of Sections II–V.

A. Simulation Example: No-Limit-Cycle Condition B.2

Simulink model of a digitally controlled buck converter used
in the simulation examples is shown in Fig. 8. The converter pa-
rameters are: 10 H, 10 F, 1 , 5 V,

2.5 V, 1 MHz. An integral discrete-time compen-
sator is applied

(21)

Fig. 8. Simulink model.

Fig. 9. Steady-state waveforms v at the A/D input and e at the A/D output in
the example of Section VI-A.

The integral compensator provides a phase lag of 90 . There-
fore, the frequency where (12) is met is

(22)

With 0.016, the gain margin of the linear part is very
small, but the system without quantizers is stable. When an A/D
quantizer with 0.2 V is added, the system violates the
condition B.2, and a limit cycle oscillation occurs, even when

is still very small. Signal waveforms at the A/D input
and at the A/D output are shown in Fig. 9. The A/D input signal
amplitude is around 0.75 , which corresponds to the effec-
tive A/D “gain” of approximately 1.2 in Fig. 4. The oscillation
frequency obtained by simulation is very close to .

B. Simulation Example: No-Limit-Cycle Condition B.1

In this example, the Simulink model of Fig. 8 is applied with
the following parameters for the buck converter: 10 H,

10 F, 5 , 5 V, 2.505 V,
1 MHz. The integral discrete-time compensator (21) is used,
with 0.0002. The A/D quantizer has 0.02 V,
and the DPWM quantizer has 0.002. The frequency

is again given by (22). The gain margin of the linear part is
26 dB. This system satisfies all no-limit-cycle condi-

tions in [2]. Fig. 10 shows that a limit-cycle oscillation occurs
as a result of violation of the condition B.1: the DPWM input
and output waveforms clearly illustrate the large effective gain
of the DPWM. If the DPWM quantization level is reduced to
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Fig. 10. Top: waveforms v and e before and after A/D quantization. Bottom:
duty-cycle command d at the DPWM input, and the quantized duty-cycle com-
mand d in the example of Section VI-B.

0.0005, which satisfies the condition B.1, the limit
cycle oscillation disappears. It is of interest to examine the plots
of the magnitude loop gain computed from (13)
as a function of the signal amplitude , for the worst-case offset

2. The results are shown in Fig. 11 for
0.002, and for 0.0005. For

0.002, there is an amplitude 0.032 V such that (14)
and (15) are met. This oscillation amplitude predicted by the dy-
namic model of Section IV is very close to the signal ampli-
tude obtained by simulation as shown in Fig. 10. For
0.0005, 1 for all , the no-limit cycle condition
(17) is met, and no limit cycle oscillations occur.

C. Experiment: No-Limit-Cycle Condition B.1

An experiment similar to the simulation example of Sec-
tion VI-B is performed using the experimental digitally
controlled buck converter shown in Fig. 12 [11]. The buck con-
verter parameters are 10 H, 10 F, 3.313 V,

1.3 V, 1 MHz. Note that the A/D converter consists
of only two comparators. The A/D converter characteristic is
shown in Fig. 13(a), together with the corresponding describing
function in Fig. 13(b). Instead of the fast PID compensator
described in [11], the controller is programmed to operate as

Fig. 11. Magnitude loop gain T (a; " ) at f for two DPWM quantiza-
tion levels q in the example of Section VI-B.

Fig. 12. Experimental digitally-controlled 1-MHz buck converter [11].

a slow integral compensator (21), with 1.26 10 .
The 6-b feed-forward DPWM with additional 3 b added by
duty-cycle dithering results in 5 V. The A/D
quantization level is 50 mV. Because of the high
switching frequency, the duty-cycle dithering contributes a
very small additional ripple in the output voltage, well within
the zero-error bin of the A/D converter. As in the simulation
examples of Sections VI-A and VI-B, the frequency given
by (22) is 15.9 kHz.

Since , where (ne-
glecting losses), the gain margin of the linear part of the system
depends on the load resistance . For example, for a load of

1 , 27.6 dB. We tested a range of load transient
responses. Fig. 14 shows the waveforms for the case when the
load current changes periodically from 160 mA to 390 mA,
which corresponds to a load resistance change from 8 to
3.3 , respectively. For 8 , the no-limit-cycle condition
B.1 is not satisfied, and near-sinusoidal limit cycle oscillations
at the frequency of approximately can be observed in the
output voltage and the A/D signals and . For 3.3 ,
is reduced and the no-limit-cycle condition B.1 is satisfied. For
this load, no limit cycle oscillations occur, as illustrated by the
waveforms of Fig. 14.
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Fig. 13. (a) Characteristic and (b) the describing function of the A/D converter
in Fig. 12.

Fig. 14. Experimental waveforms in the example of Section VI-C; Ch1: load
current i [200 mA/div], Ch2: ac-coupled output voltage v , Ch3: A/D com-
parator output y, Ch4: A/D comparator output x.

VII. NON-SINUSOIDAL LIMIT CYCLING

The dynamic model of Sections III and IV, and the no-limit-
cycle conditions of Section V-B are based on the assumption of
near-sinusoidal limit cycle oscillation. Under this assumption,
if a limit cycle exists, the oscillation amplitude and frequency
can be inferred from the model in Section IV, with illustrative
examples shown in Section V. It is important to note that even
when all conditions of Section V are satisfied, non-sinusoidal
limit-cycle oscillations may still occur, especially if in (16)
is close to 1, if the integral gain is relatively close to the limit
set by (6), or if the gain margin is close to the limit in (20). In

such cases, the DPWM output may swing between two adja-
cent levels, but with a more complicated oscillation pattern. It
is then of interest to find a bound on the limit cycle oscillation
amplitude in the output voltage. For an arbitrary signal pattern
consisting of two adjacent DPWM levels, a bound for the signal
amplitude at the output can be found from linear system theory
as the induced norm, which can be computed as the norm
of the system impulse response [10]. As an example, for a buck
converter having the control-to-output transfer function

(23)

the impulse response of which is , we have the following
bound:

(24)
Assuming, as has been observed in simulations and experi-

ments, that the DPWM output signal has the amplitude equal to
, we have a conservative bound for the amplitude of the

limit-cycle oscillation at the output

(25)

In practice, the result (25) can be used to find the worst-case
effect of the oscillation on the output voltage, regardless of the
origin of the oscillation. It should be noted that (25) is a con-
servative result. We note again the importance of a high-resolu-
tion DPWM having small quantization level for prac-
tical realization of digitally controlled switching power con-
verters. A comprehensive survey of high-frequency, high-res-
olution DPWM realizations can be found in [12].

VIII. CONCLUSION

This paper presents static and dynamic models of digitally
controlled PWM converters including quantization effects. The
models include two quantizers, an A/D converter, and a DPWM.
In the static model, a graphical method is used to conclude that
the existence of a dc solution, which is a necessary no-limit-
cycle condition, can be guaranteed if the compensator includes
integral action, if the integral gain is sufficiently low, and if the
DPWM resolution is sufficiently high. When the dc loop gain
is large but not infinite, no dc solution exists and a limit cycle
oscillation will happen. A dynamic model including quantiza-
tion effects is derived using the generalized describing func-
tion method, which considers amplitude and offset-dependent
“gains” to provide more complete quantizer models and hence
capture potentially deleterious high-gain effects. Under the as-
sumption of sinusoidal signals, the dynamic system model can
be used to predict the oscillation frequency and amplitude, if a
limit cycle exists, and to establish no-limit-cycle conditions in
terms of the A/D resolution, DPWM resolution, and the gain
margin. For cases when the sinusoidal signal approximation is
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not met, we have found bounds for the amplitude of oscillations
if a limit cycle exists.

The no-limit-cycle conditions and the amplitude bounds re-
sults point to the importance of high-resolution DPWM designs
in practical realizations of digitally controlled switching power
converters.
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Aleksandar Prodić (S’00–M’03) received the B.Sc.
degree in electrical engineering from the University
of Novi Sad, Novi Sad, Serbia and Montenegro, in
1994 and the M.Sc. and Ph.D. degrees from the Col-
orado Power Electronics Center, University of Col-
orado at Boulder, in 2000 and 2003, respectively.

Since 2003, he has been with the University of
Toronto, Toronto, ON, Canada, where he is an As-
sistant Professor with the Department of Electrical
and Computer Engineering. In 2004, at the Univer-
sity of Toronto, he has established the Laboratory

for Low-Power Management and Integrated Switch-Mode Power Supplies.
His research interests include digital control of low-power high-frequency
SMPS, mixed-signal IC design, DSP techniques for power electronics, and the
development of systems-on-chip (SoC) for power management.

Eduard Alarcón (S’96–M’01) received the M.S.
(national award) and Ph.D. degrees in electrical
engineering from the Technical University of
Catalunya (UPC), Barcelona, Spain, in 1995 and
2000, respectively.

Since 1995, he has been with the Department
of Electronic Engineering, Technical University of
Catalunya, where he became an Associate Professor
in 2000. Since 2006, he has been the Vice Dean of
International Affairs at the School of Telecomuni-
cations Engineering, UPC. From August 2003 to

January 2004, he was a Visiting Professor at the CoPEC Center, University
of Colorado at Boulder. He was the Invited co-Editor of a special issue of
the Analog Integrated Circuits and Signal Processing Journal devoted to
current-mode circuit techniques. His current research interests include the areas
of analog and mixed-signal integrated circuits and on-chip power management
circuits.

Dr. Alarcón received the Myril B. Reed Best Paper Award at the 1998 IEEE
Midwest Symposium on Circuits and Systems. He has co-organized two special
sessions related to on-chip power conversion at the IEEE ISCAS, where from
2006 to 2007 he is Chair of the CAS Technical Committee of Power Systems
and Power Electronics Circuits.
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Dr. Maksimović received the NSF CAREER Award in 1997, the Power Elec-
tronics Society TRANSACTIONS Prize Paper Award in 1997, the Bruce Holland
Excellence in Teaching Award in 2004, and the University of Colorado Inventor
of the Year Award in 2006.


