Versatile Capabilities of Digitally Controlled Integrated
DC-DC Converters

Jing Wang, Wai Tung Ng, and Olivier Trescases
The Edward S. Rogers Sr. Electrical and Computer Engineering Department
University of Toronto
Toronto, Ontario, Canada, M5S 3G4
ngwt@vrg.utoronto.ca

Abstract— The increasing need to incorporate complex control
features in switched mode power supplies (SMPS) in a CMOS
compatible environment has spurred the study of digitally
controlled integrated dc-dc converters. Designers continuously
examine various design considerations for the implementation of
these power converters, including topology choices, digital vs.
analog control scheme, power conversion efficiency
optimization, advanced passive component technologies, and
power transistors. This paper highlights some of our recent
work on integrated dc-dc converters with a particular focus on
outlining the novel features that are only possible with digital
controllers. More specifically, recent advances such as
segmented output stage, segmented gate driver, dead-time
control, and transient suppression are reviewed.

I. INTRODUCTION

Low-power digitally controlled dc-dc converters have
shown steady improvement since the first counter based
digital pulse-width modulator (DPWM) design [1]. The
introduction of the delay-line based DPWMs [2] made digital
controllers a viable option in low power portable environment.
Traditional digital controller designs are intended to mimic the
functionality of conventional analog compensators. Therefore,
most digital controllers can only have similar
performance as their analog counterparts, typically at a higher
implementation cost. The true capability of low-power digital
control becomes apparent with the introduction of more
flexible designs, such as the use of segmented output stage to
dynamically adjust the size of the output transistors according
to load conditions, in order to maintain high power conversion
efficiency [3]-[5], and one-step dead-time correction scheme
to continuously optimize the dead-times for the power
transistors [6]. Digital controllers also have the ability to
switch seamlessly between linear and nonlinear operating
modes and achieve near-optimal transient performance [7].

This paper is a brief highlight of our recent developments
in integrated dc-dc converters, with a particular focus on
outlining the novel features that are made possible with the
use of digital control and integrated SMPS. This is by no
means a complete survey, as there are many high level
research activities in this area available in the literature.

II. EFFICIENCY OPTIMIZATION

The conversion efficiency of dc-dc converters is usually
the primary concern in power supply design. While SMPS are
known to be much more efficient than linear voltage
regulators, power conversion efficiency is a function of load
current and falls off rapidly at light load. The peak efficiency
is determined by the choice of switching frequency, inductor
size, on-resistance of the power MOSFETs and parasitic
elements. To accommodate the wide range of load current
required by today's point-of-Load (POL) converters, many
techniques have been proposed to dynamically adjust the
modes of operation to maximize the overall efficiency.

In [3]-[5], digitally controlled converters with segmented
layout of the power MOSFETs in their output stages were
implemented. The load current is monitored continuously and
the digital controller determines the best size of power
MOSFET to be used [3]. This allows an optimal trade-off
between gate drive loss (minimized with small effective
transistor size) and conduction loss (minimized with large
effective transistor size) for a given load current. An
improvement in power conversion efficiency of up to 7.5% at
light-load was reported for a 4.2V-to-1.8V, 4MHz integrated
converter as shown in Fig. 1 [3]. The measured efficiency
improvement for the second generation of the converter is as
plotted in Fig. 2. To further demonstrate the effectiveness of
this automatic transistor size selection feature, a load-
prediction technique was proposed in [5]. In this example, a
digital class-D audio amplifier, often found in portable MP3
players, is used as the load. The required output current is
predicted based on the digital audio data stream, which is
readily available in class-D audio amplifier systems. With
load prediction, the power MOSFET sizing and the expected
load current requirement can be synchronized, and the
converter can always operate at optimum efficiency. This
digital control method also eliminates the need for precise
analog circuitry for current sensing, making the system
suitable for integration with advanced digital CMOS

This work was supported in part by the Natural Science and Engineering
Research Council of Canada, Auto21 Auto 21, a Network of Centers of
Excellence in Canada, and Fuji Electric Systems Co., Ltd.
Eight light load efficiency, a segmented gate driver with adjustable than the switching loss as shown in Fig. 3. To further improve consumption can easily become comparable or even greater loss [8]. Under light load conditions, the gate drivers’ power usually accompanied by a significant amount of gate drive switching losses. However, these high current drivers are and off times of the power MOSFETs, in order to reduce the turn-on range, fast gate drivers are neccessary to minimize the turn-on time is required to eliminate the conduction loss induced by

For integrated dc-dc converters running in the multi-MHz range, fast gate drivers are necessary to minimize the turn-on and off times of the power MOSFETs, in order to reduce the switching losses. However, these high current drivers are usually accompanied by a significant amount of gate drive loss [8]. Under light load conditions, the gate drivers’ power consumption can easily become comparable or even greater than the switching loss as shown in Fig. 3. To further improve light load efficiency, a segmented gate driver with adjustable driving capability was proposed as in Fig. 4 [8]. Eight identical gate driver segments are connected in parallel. The effective drive strength can be adjusted through a 3-bit digital controller, turning on one or more segments at a time. The measured converter efficiency using a segmented gate driver is as shown in Fig. 4. With lower gate driving capability at light load, as much as 7% efficiency improvement can be obtained.

In synchronous dc-dc converters, non-overlapping dead-time is required to eliminate the conduction loss induced by simultaneous cross conduction through the high-side (HS) and low-side (LS) switches, as well as body-diode conduction and reverse recovery loss in the synchronous MOSFET. However, optimum dead-time varies with circuit parameters, operation conditions and temperature, making adaptive dead-time control necessary. Anaglogue dead-time control schemes require either a current starving charge pump [4], [9] or a complex delay-locked loop [10]. Digital dead-time searching algorithms were proposed with simpler implementation yet

![Figure 1. Architecture of a dc-dc converter with segmented output stage. A current estimator is used to determine the number of segments (power transistor size) to be used in real-time.](image1)

![Figure 2. Measured improvement in power conversion efficiency for the same dc-dc converter with and without segmented power stage. Technologies. The use of digital control also allows the incorporation of traditional PWM-PFM mode-hopping method to achieve dynamic efficiency optimization over a wide range of operating conditions [3]-[4].](image2)

Efficiency (%)

Output Current (mA)

With segmented power stage

Without segmented power stage

6.2 % Efficiency Improvement

LS is off

![Figure 3. Loss analysis of a de-dc converter at light load where gate drive loss is a significant component.](image3)

Power Loss [mW]

Conduction Loss

Switching Loss

Gate Driver Loss + Ringing

Cg Loss

DCR, ESR, PCB parasitic

Buck converter losses driven by 1× driving capability for 2A load

Buck converter losses driven by 4× driving capability for 2A load

![Converter Losses for High and Low Driving Strength at light load (Iout=2A)](image4)

![Figure 4. Segmented gate driver circuit with adjustable driving strength.](image5)

![Figure 5. Efficiency versus the output load for gate drivers with 1× and 4× driving strength.](image6)
limited reaction speed [11]. A fast-response, one-step dead-
time correction method incorporated into an integrated digital
dc-dc converter was reported in [6]. The undesirable body-
diode conduction in the power MOSFETs is detected by a
two-input NOR gate, as shown in Fig. 6. The duration of
body-diode conduction is then measured by a delay-line. The
measured timing error is then digitally subtracted from the
dead-time in the next switching cycle. The plot in Fig. 7
compares the efficiency for cases with fixed dead-time and
with continuously adjusted dead-time. It can be seen that, the
efficiency is optimized across a wide range of output current.
Up to 9.5% improvement in efficiency is achieved.

III. NONLINEAR CONTROL FOR TRANSIENT SUPPRESSION

Dc-dc converters require fast dynamic response to
maintain precise voltage regulation in the presence of rapid
load steps. Nonlinear control techniques are gaining
increasing popularity as it allows the converter to break the
limitations of the linear control loop bandwidth. As a result,
 faster transient response when compared to conventional
linear control methods can be obtained [12]. Digital control
technologies facilitate the implementation of complex
nonlinear transient-suppression algorithms and novel
converter topologies that are generally not possible using
analog approaches. It also facilitates seamless transition
between linear mode for steady state operation and non-linear
mode for transient suppression.

Capacitor charge-balance based algorithms have been
studied for years [13]-[14]. After a transient event is detected,
the digital controller calculates the turn-on and turn-off times
of the power switches required to restore the output voltage as
well as the inductor current within one switching action. The
algorithm provides fast transient response with shortest
recovery time.

Transient deviation of dc-dc converters is inherently
limited by the current slew-rate of the inductor. To overcome
this physical limitation, a Buck converter with a steered
inductor was introduced in [15]. After a heavy-to-light load
step occurs, the inductor current is steered away from the
output capacitor and back to the power source via two extra
 switches. During this time period, the inductor voltage is
increased to the level of input voltage. The slew-rate for the
inductor current is greatly increased, thus suppressing the
voltage overshoot. An alternate approach to increase this
slew-rate without introducing additional power switches in the
output path was proved to be effective in [7], [16]-[17]. As
shown in Fig. 8, a main converter output stage is connected in
parallel with an auxiliary output stage that has a much smaller
inductor. The main converter is responsible for steady-state
operation. The auxiliary stage is only activated for transient
recovery and provides high current slew-rate to suppress
voltage deviation. Analog implementation of the dual-stage
converter was discussed in [16]. The controller is based on a
pair of high-speed hysteresis comparators. It requires multiple
switching actions and a series of voltage ringing was observed
before returning to steady state. A fully integrated voltage-
mode dc-dc converter that utilizes digitally controlled dual
output stages was presented in [7]. The micrograph of the IC
is shown in Fig. 9. During transient recovery, the switching
commands for both the main and the auxiliary output stages
are determined based on the capacitor charge-balance
principle, aiming at bringing the output voltage back to steady
state with one set of on/off switching actions. The non-linear
digital controller also predicts the new duty ratio and passes it
to the steady-state linear controller, thus achieved a seamless
transition. Experimental result in Fig. 10 and 11 shows that
the auxiliary stage achieves over 50% reduction in transient
overshoot and 80% reduction in recovery time compare to a
conventional converter. A current-mode implementation of

![Figure 6. System diagram (a) and theoretical waveform (b) for detecting body-diode conduction with a NOR gate.](image)

![Figure 7. Overall power conversion efficiency is optimized via dynamically adjusted dead-time compared with fixed dead-times cases.](image)
the digital dual-stage converter was discussed in [17], where timing of the switching commands during transients is easily obtained using a digital look-up table.

CONCLUSION

Low-power digital controllers offer the flexibility to implement efficiency optimization schemes and novel control techniques that are not readily supported by analog circuit techniques. The continued cost-scaling of CMOS technologies and the growing need for on-chip power management will continue to fuel the popularity of digitally controlled integrated dc-dc converters.

REFERENCE

