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ABSTRACT 
Knowledge of device statuses on the power grid is a crucial component of 

situational awareness, and the lack of this knowledge has caused catastrophic failures 

in the past.  Existing techniques for status identification, such as topology processing 

and state estimation, rely almost exclusively on local area measurements without time 

stamps or synchronization, and can be significantly improved by leveraging PMU 

data which is available over wider areas at much faster data rates.   The processing 

needed to extract steady-state angle information from PMUs is the first topic of 

discussion, and the advantages and disadvantages of two types of digital filters—

finite impulse response and median—are investigated.  The usefulness of each 

filtering method is demonstrated with a broad spectrum of signals, both real and 

simulated.  The proposed method of system event identification is then presented in a 

general form, with specific algorithms defined for detecting single-line, double-line, 

and generator outages.  Test results for each of these event classes are provided to 

demonstrate the efficacy of the proposed event detection algorithms.   

In addition to the new methods presented for the processing of PMU data, 

techniques for visualization of PMU data in its processed and unprocessed forms are 

described.  A new technique based on graphical processing units (GPUs), developed 

to allow rendering speeds to match the relatively fast data rate of PMUs, is presented, 

along with results demonstrating the marked increase in visualization speed.  Some of 

the benefits of speeding up contouring are discussed, including how PMU derivative 

information can be visualized with GPU-based rendering. 
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1 INTRODUCTION 

1.1 Motivation 

With the increasing load on the power system, along with the massive interarea 

transfers enabled by the deregulation of the 1980s and 1990s, there is a clear need to 

have reliable information about both the local system and external systems.  Tellingly, 

four of the six major North American blackouts were due in part to a lack of 

situational awareness [1].  Although there is a clear need for sharing of information, 

there is limited real-time sharing of SCADA or state estimator information in the 

United States [2].  However, as phasor measurement units (PMUs) [3] have been 

deployed throughout the North American power grid, there have been significant 

efforts to ensure that PMU data is shared between all interested parties [4].  Because 

PMU data is more widely available in near real-time than other power system 

measurement data, it can provide unique insights into the global operation of the grid.  

However, new techniques must be developed to apply the data that PMUs provide in a 

useful manner.   

Extensive research in applying PMU information to improve situational 

awareness has been conducted since their introduction, including applications in state 

estimation [5-7], dynamic security assessment [8-10], and visualization [11-13].  Yet 

another key aspect of situational awareness in the power grid is the knowledge of 

transmission line, transformer, and generator statuses.  Beyond incorporation of 

PMUs into traditional state estimation, which can include topology estimation [14], 

there has been little research into how PMUs can be used to enhance topology 
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information, particularly outside of the local area.  Current network topology 

processors focus on obtaining local system topology information through the use of 

predominantly local area measurements.  However, connectivity information over the 

wide area is very important for system operations and is a major reason for the 

existence of the NERC System Data Exchange (SDX) [1].  Because there is 

significant value in improving system operators’ knowledge of external system line 

outages, a method which utilizes PMU data to effect this improvement has been 

developed. 

The method discussed in this work makes use of SDX information, as it is 

currently the best source of systemwide line status information.  One of the most 

telling indications of its usefulness is its application in processing transmission 

loading reliefs (TLRs) on the North American power grid.  However, despite 

increased awareness of the importance of interarea information exchange since the 

August 2003 blackout, updates to the SDX are still only required on an hourly basis 

[15].  Because much can happen on the power grid within an hour, there is a need for 

tools which are capable of providing more current information on external system 

outages.  This work looks at ways to improve upon the status information from local 

topology processors and the NERC SDX by incorporating PMU data which, like SDX 

information, is also available over the entire interconnect through phasor data 

concentrators (PDCs) [4].  Although the methods presented here would work with any 

source of synchronized angle data, PMUs are the only devices which are deployed 
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over the entire power grid and are capable of providing geographically dispersed, 

synchronized, and accurate phasor angle measurements. 

The processing needed to extract steady-state angle information from PMUs is 

the first topic of discussion, and the advantages and disadvantages of two types of 

digital filters—finite impulse response and median—are investigated.  The usefulness 

of each filtering method is demonstrated with a broad spectrum of signals, both real 

and simulated, which are meant to be representative of typical power system signals.  

This process is necessary to convert the raw angle measurements into a form which 

can be used with traditional steady-state analysis tools such as the power flow.  The 

intended application of this filtering, system event identification is then presented in a 

general form, with specific algorithms defined for detecting single-line, double-line, 

and generator outages.  Test results for each of these event classes are provided to 

demonstrate the efficacy of the proposed event detection algorithms using both real 

and simulated data.  Several optimization problems are also defined to guide 

placement of PMUs for event detection, and results are presented based on usage of 

exhaustive search and simulated annealing to perform the placement optimization. 

In addition to the new methods presented for the processing of PMU data, 

techniques for visualization of PMU data in its processed and unprocessed forms are 

described.  A new technique based on graphical processing units (GPUs), developed 

to allow rendering speeds to match the relatively fast data rate of PMUs, is presented, 

along with results demonstrating the marked increase in visualization speed.  Some of 
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the benefits of speeding up contouring are discussed, including how PMU derivative 

information can be visualized with GPU-based rendering.  

1.2 Literature Review 

The basic operations needed for PMUs to work, including relevant filtering and 

signal processing techniques, were first described in 1983 [16] and the first prototype 

PMU was developed in 1988 [17].  Shortly after these new measurement devices were 

described, PMU applications related to situational awareness began to be researched.  

Initial applications using PMUs were primarily focused on improvements to state 

estimation based on the ability to directly measure system states [7].  A key aspect of 

this initial research into PMU usage was the need for traditional SCADA 

measurements (such as breaker status, voltage magnitude, and current magnitude) to 

accompany PMU measurements in order to use the new data.  The problem with this 

dependence on SCADA measurements is that, outside of the local control area, 

SCADA measurements are usually unavailable.  One way in which researchers have 

attempted to get around this dependence on SCADA measurements has been to 

determine how complete coverage of the power system could be obtained using only 

PMU measurements.  The key paper on this topic demonstrates that complete 

observability could be obtained with as few as one fourth to one third of the system 

buses having PMUs [18].  Unfortunately, current coverage of PMUs is still well 

below this number (e.g., for the Eastern Interconnect, only 60 PMUs are currently 

online [19]).  Additional work in limited placement of PMUs for incomplete 

observability fails to provide applications in which this partial observability would be 
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useful beyond incorporation into traditional state estimators [20].  Besides 

applications in state estimation, additional research has been performed in the usage 

of PMUs for system monitoring.  Monitoring of power system harmonics based on 

PMU data is discussed in [21] and [22], although there is limited discussion of how 

PMU location and filtering can affect the applicability of this monitoring task for 

improving operator awareness.  Fault detection and classification based on highly 

localized PMU measurements has also been researched.  Reference [23] provides an 

overview of the different methods proposed in this area and notes that all of the 

currently developed methods for fault detection require PMUs to be located at one or 

more of the terminal buses of the faulted transmission line.  Finally, direct 

visualizations of phasor angles for system monitoring have been developed [10-12], 

although there is little guidance in how the visualized angles should be interpreted by 

system operators. 

The notion that PMU measurements can be applied in more problem domains, 

particularly event detection and classification, is supported by the literature.  The 

close correspondence between PMU angle measurements and correct steady-state 

phasor angles on the system has been demonstrated in numerous studies [24-26].  In 

addition, the IEEE standard governing PMU accuracy requires that the total 

vectorized error (TVE), defined as the normalized Euclidean distance between the 

true and measured steady-state phasors, be within 1% [27].  Although it cannot be 

assumed that SCADA and state estimator data is available over the entire 

interconnect, some additional wide area information, such as that available through 
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the NERC System Data Exchange (SDX) [28], can also be used for interpretation of 

PMU data due to the system-wide availability of this information.  Usage of PMU 

measurements for comprehensive dynamic information is less promising, mainly due 

to the lack of a unifying standard on PMU behavior during transient conditions. 

Event detection and classification can be divided into three key components: 

detecting when an event has occurred, extracting salient information about the event 

from the raw data, and classifying the event based on this information.  For the first 

two tasks, detection and information extraction, the largest body of research is in the 

area of image processing due to the need for accurate edge detectors in many 

applications.  Edge detectors are essentially step change detectors and can be used to 

return not only step change locations but also the amplitude of step changes.  An 

excellent survey of classic edge detection techniques is provided in [29].  A widely 

used “hill climbing” method used to accurately detect edges which involve ramp 

rather than step changes is detailed in [30] and serves as the basis for the edge 

detection techniques described later in the dissertation.  Moving beyond linear filters, 

nonlinear filtering for edge detection, in particular median filtering, has been shown to 

outperform linear filtering for certain image processing [31] and power electronics 

applications [32].  However, there are two key issues which make nonlinear filters 

less appealing—the potentially higher computational burden relative to linear filters, 

and the inability to determine the filter’s performance a priori.  One commonality 

among all edge detectors surveyed is the domain-specific length of the filter used.  In 

all cases, analysis of representative data must be conducted to determine the most 
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appropriate filter length for a given application [30].  In addition to the image 

processing literature, there has also been extensive research into event detection, 

feature extraction, and event classification in power systems, primarily centered on 

fault detection and classification.  Modern methods of solving this problem rely on 

techniques from the field of artificial intelligence (AI), such as neural networks [33] 

and expert systems [34].  There has also been significant work in detecting power 

quality disturbances using various data processing techniques, including wavelet 

analysis, expert systems, neural networks, and genetic algorithms [35].  Although 

these methods could be used for detecting changes and extracting information about 

the changes in system states, adapting these techniques to wide area event 

classification is not feasible due to the unavailability of quality training data.  In the 

area of large-scale, steady-state event detection, the primary tools currently used are 

topology processing and state estimation, relying almost exclusively on traditional 

power system data [36].  One notable exception is [37], which provides a method for 

direct determination of external system outages based on expected correlations 

between changes in internal system states and changes in boundary flows.  

Power system visualization was first discussed in the context of visualizing load 

flow solutions using the IBM System/360 mainframe computer [38].  Additional work 

in visualization techniques continued throughout the 1970s, 80s, and 90s; reference 

[39] provides a concise overview of state-of-the-art visualization techniques 

developed up to the mid-1990s.  There has since been substantial research and 

deployment of system visualizations throughout control centers with a focus on 
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increasing situational awareness of grid operators [40, 41].  In addition, formal 

evaluation has shown the potential benefits of several visualization techniques such as 

voltage contouring and network flow animation [42, 43].  One key similarity among 

all currently used visualization methods is the reliance on the CPU to perform any 

necessary calculations.  This has been sufficient in the past because rendering times 

have only had to keep up with the relatively slow rates of SCADA and state estimator 

data, typically on the order of seconds or minutes.  Because PMU measurements 

provide data at rates which are an order of magnitude faster, CPU-based techniques 

will be difficult to use if real-time visualization is desired.  Taking as one example 

voltage contouring, one of the fastest techniques currently used for CPU-based 

voltage contouring requires 0.63 s to render a contour of a medium-sized system [44]; 

however, real-time visualization of PMU data, which has a data rate of 30 frames per 

second (fps), would require rendering times to be shorter than 0.033 (1/30) s.  It has 

been shown in numerous applications that one way of achieving significant 

visualization speedups is through the usage of programmable GPUs.  The promise of 

improved graphical performance through the utilization of GPUs is based on the 

massive computation power of modern GPUs—for instance, some of the latest GPUs 

such as the GeForce GTX 280 have theoretical processing speeds in excess of 900 

billion floating point operations per second (Gflops) which is much higher than 

modern CPUs which are only capable of around 30 Gflops [45].  References [46] and 

[47] provide a broad survey of applications in which GPUs have provided significant 

acceleration of visualization techniques.  The use of GPUs to speed up scattered data 
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interpolation, the more formal name for the contouring techniques used in power 

systems, of three- and four-dimensional data is presented in [48]; one of the key 

results is that interpolating data on a 1283 grid, with 350 000 data points, requires only 

0.328 s.  In addition, it was found that using GPU-based data interpolation can 

facilitate real-time updating of data-driven displays at frames rates of approximately 

10 fps.  Using power system visualizations to illustrate data trends, as suggested in 

[12], would also require significant reductions in rendering times to obtain frame rates 

which are still perceived as responsive [49]. 

1.3 Dissertation Overview 

PMUs provide detailed angle information that is sampled simultaneously at each 

measured bus.  This capability allows for extremely fast detection of changes in 

system angles, which in turn can provide information about events occurring on the 

system.  Power system events can be modeled as a change in power injection at the 

system buses, which can in turn be related to changes in angles through the power 

flow equations.  Figure 1.1 illustrates how an event on the system is mapped into a 

change in angles through a combination of event modeling and application of the 

power flow equations.   
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Figure 1.1: Determining the angle changes on the system resulting from an event. 

For each event E from the event set E, a vector ΔP  is constructed which models 

the event as a set of changes in power injections on the system.  The construction of 

this ΔP  vector varies based on the type of event being considered and is discussed in 

more detail below within the sections dealing with each event type.  Once the ΔP  

vector is determined, the power flow equations are then used to determine the 

associated changes in angles on the system, Δθ .  Either the ac or dc power flow 

equations can be used to perform the mapping from ΔP  to Δθ , and the choice 

between the two is generally a tradeoff between accuracy and computation time [50].  

From a performance standpoint, the ac power flow solution is slower than the dc 

power flow solution but provides higher solution accuracy.  In addition, the ac power 

flow equations require the full state of the system to be known.  On the other hand, 

utilization of the dc power flow equations only requires knowledge of the system 

topology and line parameters.  Because complete state information is not available 
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over the entire interconnect, the dc power flow equations are used in this work.  One 

form of the dc power flow equations is [50] 
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where i ω k indicates the existence of a branch between the two buses i and k, and ikX

is the reactance of the branch connecting buses i and k. 

Event detection can be considered the inverse of the procedure shown in Figure 

1.1, i.e., determination of the event which resulted in an observed set of angle changes 

on the system.  A formal definition of the problem is 
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where K is the number of PMU-observable buses on the system.  The mapping f is 

represented in Figure 1.1 as the transformation from an event E to a change in angles

θΔ . 

Because ( )observed EΔ −θ f  in (1.2) is calculated independently for each event, it 

is possible to separate the event set into C different classes of events and minimize 

over each individual class of events: 
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The event detection algorithm of (1.2) can then be broken down into the following 

steps: 

1. Determine observedΔθ  

2. For each class of events c 

a. Find the minimizing event *
cE  according to (1.3) 

Chapter 2 and Section 3.1 provide details on how step 1 is performed.  The majority 

of Chapter 3 is devoted to describing in detail how step 2.a is performed for single- 

line outage, generator outage, and double-line outage event classes.  Chapter 4 

provides results and analysis for outages on a 37-bus study system (using simulated 

data) and the Tennessee Valley Authority system (using real PMU measurements).  

Chapter 5 looks at several different objective functions and optimization methods 

which can be used to place PMUs for event detection.  Chapter 6 describes a new 

GPU-based contouring method along with the advantages in terms of usability and 

applications.  Finally, Chapter 7 presents conclusions based on the remainder of the 

dissertation, along with several potential avenues of future research. 
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2 FILTERING OF PMU MEASUREMENTS TO 
EXTRACT STEADY STATE VALUES 

In order to evaluate the possibility of an event having occurred on the system, it is 

first necessary to determine the quasi-steady-state changes in measured phasor angles, 

observedΔθ .  The phasor angle measurements at bus i are referred to as [ ]i nθ , where n is 

the nth sample of the phasor angle.  Because only the quasi-steady-state angle values 

are of interest, rather than the total dynamic response, filtering must be applied to the 

signal.  The key objectives for the filtering process are: 

2.C1. Eliminate noise and oscillations. 

2.C2. Maintain step changes due to switching of devices. 

2.C3. Minimize the amount of delay between an event occurring and the 

extraction of the angle changes on the system. 

Two filtering methods are evaluated for the purposes of event detection—finite 

impulse response (FIR) linear filtering and median filtering.  Each of these has its 

own advantages and disadvantages which are discussed in detail below.  In addition, a 

method of quantitatively evaluating filter performance is presented, and the different 

filtering methods are evaluating for a range of real and simulated PMU signals. 

2.1 FIR Filtering of Measurements 

FIR filtering is one of the most common types of digital signal processing used, 

due primarily to its stability and linear phase characteristics.  In addition, this type of 

filter has shown promise in other applications related to PMU signal processing [51-

54].  A general N-order FIR filter takes the following form: 
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0

N
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x n x n iα
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FIR filtering was chosen rather than infinite impulse response (IIR) filtering, the other 

common linear filtering method, for several reasons.  First, FIR filters are guaranteed 

to be BIBO stable because there is no feedback in the system.  This can be an 

important feature for this application, particularly if measurement noise cannot be 

bounded ahead of time.  For example, impulse noise has been observed in real PMU 

data, and BIBO stability is necessary to ensure that impulse noise does not have a 

disastrous effect on the output signal.  A second desirable quality of FIR filters is their 

linear phase characteristic.  Maintaining edge information is crucial in detecting 

where angle changes have occurred, along with the magnitude of the angle changes.  

Considering the Fourier transform of a unit step function [55], 

 ( )1 2
1 j

k
k

e ω πδ ω π
∞

−
=−∞

+ +
− ∑  (2.2) 

nonuniform displacement of different frequency components could lead to difficulties 

in detecting angle changes and properly quantifying the magnitude of the changes.   

FIR filters do suffer from some shortcomings relative to IIR filters.  FIR filters 

typically require higher orders in order to obtain similar frequency response to an IIR 

filter.  This can lead to increased delay between the occurrence of an event and the 

detection of the event.  In addition, the lower order of IIR filters results in fewer 

computations, although the typical PMU sampling rate of 30 samples/s is orders of 

magnitude slower than modern processors which operate in the MHz to GHz range.  
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Design of FIR filters is also more complex than IIR filter design, primarily due to the 

lack of closed-form design equations for FIR filters [55]. 

Because closed form design equations do not exist for FIR filters, several 

different design techniques are typically employed depending on the application.  The 

two methods most commonly used in FIR filter design are window-based methods 

and optimization-based methods.  Window-based FIR filter design is conceptually 

and computationally simple, with the following three basic design stages [55]: 

1. Specify the ideal response within the frequency domain. 

2. Determine the corresponding impulse response via the inverse Fourier 

transform. 

3. Apply a window to determine the causal FIR coefficients which approximate 

the ideal impulse response. 

This application requires low-pass filtering in order to attenuate undesired 

oscillations, leading to three design parameters for a window-based FIR filter design: 

the window type, the low-pass cutoff frequency, and the filter order.   

In the literature, both Blackman [52] and Hamming [54] windows have been used 

to process PMU data.  The Blackman window is characterized by a wide transition 

band with decaying sidelobes, while the Hamming window has a sharper transition 

band with constant sidelobe amplitudes [55].  These two windows, along with the 

simpler rectangular window (which has the narrowest transition band but the largest 

sidelobe amplitudes), were tested with a simulated PMU angle signal sampled at 30 

samples/s for a FIR low-pass filter design having a cutoff frequency of 0.1 Hz.  Figure 
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2.1 shows the results of applying each of these windows to sample PMU data; clearly, 

the Hamming window provides the best combination of oscillation attenuation and 

delay minimization.  Figure 2.2 provides the magnitude response of each of the 

different filters used in Figure 2.1; the filter based on the Hamming window provides 

a good compromise between the responses of the rectangular window-based filter, 

which has poorly attenuated sidebands, and the Blackman window-based filter, which 

has a very wide transition band. 

 
Figure 2.1: Responses of 60-order, low-pass, 0.1-Hz FIR filters on a PMU angle 
signal using rectangular, Hamming, and Blackman windows. 
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Figure 2.2: Magnitude response of 0.1-Hz, 60-order, low-pass FIR filters with three 
different window types. 

The choice of cutoff frequency is based on the lowest frequency anticipated in the 

angle oscillations after a system event occurs.  Typical power system oscillations at 

the 15-Hz frequency (the Nyquist frequency for the a PMU data rate of 30 samples/s) 

and below can be divided into two categories: local modes in the frequency range of 

0.7 to 2.0 Hz and interarea modes in the frequency range of 0.1 to 0.8 Hz [56].  The 

frequencies of the interarea modes on a power system are a function of many factors, 

including generator excitation systems, load characteristics, and typical system 

operating conditions [57].  To eliminate as much of these low-frequency oscillations 

as possible, the low-pass cutoff frequency was set to 0.1 Hz in the FIR filter design.  

The cutoff frequency could also be tailored to reflect the expected minimum 
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frequency of electromechanical oscillations on a given system, e.g., 0.5 Hz for the 

Eastern Interconnect [57] and 0.1 Hz for the Western Interconnect [58]. 

 
Figure 2.3: Effect of a 0.5-Hz, Hamming-window, low-pass FIR filter on a PMU 
angle signal with 30, 60, and 90 filter orders. 

The last design parameter, filter order, serves as a tradeoff between delay in 

detection of the event (which, for a symmetric FIR filter, is equal to the filter order  

minus one divided by two) and attenuation of undesired frequency components.  In 

Figure 2.3, the same signal from Figure 2.1 was filtered with three FIR, Hamming-

window filters using filter orders of 30, 60, and 90.  The 60-order filter provides better 

attenuation of the initial overshoot compared to the 30-order filter and has roughly the 

same attenuation capabilities as the 90-order filter but with reduced delay.  Analysis 

of real and simulated data has shown that using a filter of order 61 is a good tradeoff 
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between delay (1 s, for a 30 samples/s signal) and attenuation.  In addition, Chapter 4 

provides a detailed look at how a broad range of FIR filter orders affect the ability to 

detect events. 

Because the goal is to provide a real-time application for use in control centers, 

the computational complexity of any filtering operation must be taken into account.  

This provides another bound on the filter order, although, as shown above, the delay 

and attenuation characteristics are the primary factors used in choosing the desired 

filter order.  For an N-order FIR filter, the calculation of each element of the output 

signal FIR
filtx  requires N multiplications and N adds (also known as a multiply and 

accumulate (MAC) sequence [59]), according to (2.1).  Therefore, the order of the 

FIR filter implementation, using “big-O” notation, is O(N).  In terms of storage 

requirements, only the last N data points must be stored in order to compute the 

corresponding output point; therefore, storage is also O(N). 

2.2 Median Filtering of Measurements 

Because much is known about the typical frequency characteristics of power 

system signals, and FIR linear filters are designed using explicit frequency response 

characteristics, FIR filters provide a good way to attenuate unwanted oscillations 

(criterion 2.C1).  However, linear filters in general do a poor job of maintaining step 

changes in signals (criterion 2.C2).  Instead of maintaining the sharp transition, linear 

filters tend to convert the step change into a ramp [32], and this effect can cause a 

delay in the determination of the angle change vector (criterion 2.C3).  To maintain 

step changes and reduce delay, median filtering provides a possible alternative to FIR 
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filtering.  In addition, the usage of median filtering to smooth out signals in power 

electronics control applications [32], FNET monitoring [60], and PMU calculations 

[61] indicates that this filter type can be a viable alternative to linear filtering. 

The basic idea of a median filter is to run a sliding window over the data samples, 

then use the median value from each window as the output value.  The typical form 

used to describe the median filter is [32] 

 [ ] [ ] [ ] [ ]{ }median of , , , ,Med
filtx n x n k x n x n k′ ′ ′ ′= − +… …  (2.3) 

for a median filter of length N = 2k + 1.  However, this form of the filter is noncausal 

because the output samples are dependent on later samples of the input data.  To 

convert this into a causal filter, the substitution n n k′= +  is made, resulting in the 

following causal median filter: 

 [ ] [ ] [ ] [ ]{ }median of 1 , 2 , ,Med
filtx n x n N x n N x n= − + − + …  (2.4) 

By converting from the noncausal form of (2.3) to the causal form (2.4), a delay of 

1
2

N −  samples is introduced into the output signal.  This delay effect is illustrated in 

Figure 2.4 for a step change input signal, with the step change occurring at sample 50.  

The dependence of the delay on the filter length indicates that lowering the filter 

length improves the ability of the median filter to satisfy criterion 2.C3.  
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Figure 2.4: Illustration of the delay introduced by using a causal median filter with 
window length 21 for a step change input signal. 

As shown in Figure 2.4, the median filter does not corrupt an unmodified step 

change, except for the known delay introduced by the causal median filter.  

Unfortunately, power system signals do not typically follow this ideal step change 

pattern and instead contain step changes combined with oscillations (as mentioned in 

the previous section).  Therefore, the ability of the median filter to handle low-

frequency oscillations must be demonstrated in order to ensure it is a viable 

alternative to FIR filtering.  As presented in (2.4), the median filter only has one 

design parameter—N, the size of the window.  To ascertain the performance of the 

median filter for different values of N, the same PMU signal used in Figures 2.1 and 

2.3 was tested with several different window sizes.  The outputs of these filters are 

shown in Figure 2.5; as with FIR filtering, it is clear that the window length is closely 
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tied to the ability to attenuate unwanted oscillations; in addition, an increased window 

size results in increased delay as expected. 

 
Figure 2.5: Effect of a median filter on a PMU angle signal with window sizes of 31, 
61, and 91. 

Computational and storage requirements of median filtering are based on the need 

to sort incoming data points to determine the median value over each window.  The 

fact that the window is moved one sample at a time, so that each new median is taken 

with just one sample changed, allows for several optimized implementations of the 

median filtering algorithm [62], including one method which is capable of calculating 

each new output value in O(log N) time with O(N) storage requirements.  Therefore, 

the computational and storage burden of median filtering is very close to that of FIR 

filtering.  Practically speaking, median filtering data at 4 kHz with a window length of 
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5 was achievable as early as 1992 using a 20-MHz digital signal processor [32], and 

the computational requirements of median filtering are not expected to be a 

determining factor in the filter design. 

2.3 Comparing FIR and Median Filtering 

In order to compare the performance of FIR and median filtering, several metrics 

are adapted from [63] and address the filter criteria given as 2.C1-2.C3: 

• Percent overshoot (PO):  

 

[ ]

)
[ ]

,

100%

arg max
begin

filt max ss

ss

filt max
n n

x n x
PO

x

x n n
⎡∈ ∞⎣

−
= ×

=
 (2.5) 

• Rise samples (RS): 

 
[ ]

95% 5%

%,
100%p filt ss

RS n n
pn n x n x

= −

∀ ≥ ≥ ×
 (2.6) 

• Delay samples (DS): 

 50% beginDS n n= −  (2.7) 

The metrics as defined in (2.5)-(2.7) assume the signal has the steady-state value 

before the onset of the event subtracted from all signal values so that the steady-state 

value before the onset of the event is adjusted to 0.  The percent difference metric is 

used to quantify how well the post-event oscillations are damped.  The sample value 

nbegin is the last sample before the event occurs (i.e., the last sample in which x 

maintains its pre-event steady-state value) in the original signal x[n].  The quantity xss 

is the steady-state value associated with the post-event system conditions.  In Figure 

2.6, the quantities used to calculate percent overshoot are labeled for a given filter 
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output.  As [ ]filt maxx n  becomes closer to xss, the percent overshoot approaches zero 

and the criterion 2.C1, removal of unwanted noise and oscillations, is better satisfied.  

Therefore, the best filter would be one which has a percent overshoot of zero, and the 

closeness of a given filter to zero is a quantitative measure of fitness with respect to 

criterion 2.C1. 

 
Figure 2.6: Values used to calculate percent overshoot (PO). 

The second metric given above, rise samples (RS), provides a measure of how 

many samples it takes for the output of the filter to reach the new steady state.  Delay 

is eliminated from this calculation by referencing the rise interval from the sample at 

which 5% the new steady state is attained, rather than nbegin.  This separates the delay 

introduced by the filter from the spreading of the edge information, i.e., it separates 

the filter performance with respect to criteria 2.C2 and 2.C3.  Figure 2.7 illustrates the 

values needed to determine the RS value for a given filter’s output.  For perfect edge 

preservation, n95% and n5% would be the same sample, leading to an RS value of 0 

samples.  At the other extreme, for a filter which results in converting the step change 
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into a very slowly rising signal, RS will be a high number.  Therefore, RS provides a 

quantitative measure of the fitness of the filter with respect to criterion 2.C2. 

 

Figure 2.7: Values used to calculate rise samples (RS). 

The last of the metrics defined above, delay samples (DS), is a measure of how 

long after an event occurs before the change in state can be observed.  The delay 

amount is based on the number of samples it takes for the filtered signal to reach 50% 

of the final steady-state value xss.  This is an important metric in terms of situational 

awareness, because any delay introduced by the filtering operation can reduce the 

ability of system operators to react to changing system conditions.  Figure 2.8 

illustrates how the DS value is calculated for a given filter output.  By reducing the 

amount of delay introduced by the filter, the DS value can be brought to zero; 

however, as discussed in the previous sections on FIR and median filtering, this is 

generally not possible due to the usage of causal filtering.  However, minimizing DS 
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is a key concern in order to improve the capability of operators to react to changing 

network conditions and serves as a quantitative measurement of criterion 2.C3. 

 
Figure 2.8: Values used to calculate delay samples (DS). 

2.4 Filter Evaluation 

Using the PO, RS, and DS definitions, it is possible to provide a quantitative 

description of the different filtering options available for usage in PMU-based event 

detection.  A series of tests was run in order to evaluate the capability of various FIR 

and median filter designs for this application.  The results of these tests are presented 

below. 
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Figure 2.9: RS and DS values for FIR and median filters with filter orders / window 
sizes in the range of 1-100 and 1-99 applied to a unit step change. 

2.4.1 Step change with no oscillations 

The first test performed looks at the response of each filter to a step change in the 

input signal with no oscillations after the step change.  This would correspond to a 

system which has complete damping of all modes after an event occurs.  The signal 

was constructed to have a sampling time of 1/30 s, corresponding to typical PMU 

signals.  The onset of the step change was set to occur at sample 60 (i.e., nbegin = 60), 

and the amplitude of the step change was set to 1.0. Figure 2.9 illustrates the 

performance of the FIR and median filters for filter orders and window lengths 

ranging from 1 to 99.  The PO values are not displayed, as the values were zero to 

within machine precision for all of the filters tested with the basic step change.  The 
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uniformly zero value of RS for the median filters indicates that the median filter does 

not corrupt the edge in any way; in contrast, the FIR filters convert the step change 

into a ramp and result in significantly higher RS values.  In terms of delay, the linear 

relationship shown in the second half of Figure 2.9 shows that the FIR and median 

filters have equivalent delays for a given filter order or window size (i.e., using an 

FIR filter of order N results in approximately the same delay as using a median filter 

with window size N).   

Although these results show extremely linear behavior for RS and DS in terms of 

the filter order, the likelihood of observing a true step change on the power system is 

very small; therefore, more realistic signals must also be tested. 

2.4.2 Step change with 1-Hz oscillations 

The second type of signal which the filters were tested with is a unit step change 

with oscillations added after the step change.  The oscillation was set to a frequency 

of 1 Hz, with a 0.2 damping ratio and magnitude of 0.2, giving rise to the following 

signal: 

 [ ] ( ) ( )60
2

30

0 60

60
1 0.2 sin 2 60

30

n

n
x n n

e nπ
−

−

<⎧ ⎫
⎪ ⎪= −⎛ ⎞⎨ ⎬+ ≥⎜ ⎟⎪ ⎪

⎝ ⎠⎩ ⎭

 (2.8) 

The unfiltered signal is shown in Figure 2.10. 
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Figure 2.10: Unfiltered test signal used to test filter responses for a step change with 
1-Hz oscillations after the step change. 

As with the step change test outlined in the previous section, the RS and DS 

values were calculated for FIR filter orders of 1-100 and median window lengths of 1-

99.  The results obtained are shown in Figure 2.11.  By comparing this figure to 

Figure 2.9, it is clear that the RS and DS values associated with a given FIR filter 

order or median window length are due primarily to the length of the filter rather than 

the characteristics of the original signal.    
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Figure 2.11: RS and DS values for FIR and median filters with filter orders / window 
sizes in the range of 1-100 and 1-99 applied to a unit step change with post-step 
oscillations of 1 Hz. 

The percent overshoot values associated with the different FIR and median filter 

lengths are shown in Figure 2.12.  For low filter lengths (less than 30), the median 

filters perform slightly better than the FIR filters; for filter lengths between 35 and 55, 

the FIR filters perform slightly better than the median filters; and for filter lengths 

beyond 55, the two filters are essentially equivalent in performance.  The key result 

shown in this figure is that, although the median filters have consistently lower RS 

values compared to the FIR filters, there are very few differences between the two 

filter types in terms of DS and PO for a given filter length.  Therefore, usage of 
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median filtering results in significant gains with respect to edge corruption with little 

to no compromise in delay or percent overshoot. 

 
Figure 2.12: PO values for FIR and median filters with filter orders / window sizes in 
the range of 1-100 and 1-99 applied to a unit step change with post-step oscillations of 
1 Hz. 

2.4.3 Step change with variable oscillations 

Because the data captured by PMUs connected to a real power system can exhibit 

oscillatory modes over the range of 0.1 to 15 Hz, it is important to understand how the 

filters behave in the presence of these frequencies.  To achieve this goal, RS, DS, and 

PO values were calculated for signals identical to Figure 2.10 (i.e., with amplitude of 

0.2 and damping of 2), with the poststep oscillation frequency varied in 0.1-Hz 

increments from 0.1 to 15 Hz.  The FIR filters tests were conducted with filter orders 
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ranging from 1 to 99 in increments of 2, and the median filter tests were conducted 

with window lengths ranging from 1 to 99 in increments of 2.   

 
Figure 2.13: RS and DS values for FIR filters with filter orders in the range of 1-99 
applied to a unit step change with poststep oscillations of 0.1-15 Hz. 

Figure 2.13 shows that the RS and DS values associated with a particular FIR 

filter order are independent of the oscillation frequency.  The DS value is independent 

of frequency because the delay of an FIR filter is a function of its filter order, and RS 

is independent because this metric quantifies the effect of the filter on the edge, not 

the oscillations.  The RS and DS results for the median filters are shown in Figure 

2.14; as with the signal tests in Sections 2.4.1 and 2.4.2, median filters have similar 

DS values to the FIR filters of the same length.  The nonzero RS values are due to the 

interference of the poststep oscillations with the median determination around the step 

boundary (known as “edge jitter” [64]); however, the highest RS value obtained is 

nine samples, much lower than the corresponding FIR filters with similar delays. 
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Figure 2.14: RS and DS values for median filters with window lengths in the range of 
1-99 applied to a unit step change with poststep oscillations of 0.1-15 Hz. 

The most significant differences with respect to the two filter types are exhibited 

in the PO values.  The PO values for the FIR and median filters are provided in 

Figures 2.15 and 2.16, respectively.  The PO value for each oscillation frequency 

consistently decreases as the FIR filter order is increased, as expected from the 

frequency response shown in Figure 2.2.  On the other hand, the median filters 

perform about the same at both low and high frequency extremes.   

 
Figure 2.15: PO values for FIR filters with filter orders in the range of 1-15 applied to 
a unit step change with poststep oscillations of 0.1-15 Hz. 
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Figure 2.16: PO values for median filters with window lengths in the range of 1-15 
applied to a unit step change with poststep oscillations of 0.1-15 Hz. 

Although the RS values are significantly higher with FIR filters regardless of the 

filter length or oscillation frequency, there is a tradeoff between DS and PO values for 

both filter types.  To investigate this relationship, a new quantity is defined, 

filter type
%xPODS , which is the minimum DS value such that for all oscillation frequencies 

in the range of 0.1-15 Hz, the PO value is less than or equal to x% for the filter type.  

The difference in this metric for the two filter types, FIR median
% %x xPODS PODS− , can 

indicate which filter to chose for a desired minimum PO.  Figure 2.17 shows that for 

small percent overshoot requirements (x < 14), median filtering can achieve the 

desired percent overshoot with less delay than FIR filtering.   
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Figure 2.17: PODS௫%FIR െ PODS௫%median based on unit step and oscillation signals with 
frequencies of 0.1-15 Hz. 

2.4.4 Real PMU signal 

To test the filters’ performance in extracting steady-state angles from PMU 

signals, a test was also conducted using a PMU angle signal obtained from a North 

American power company.  The particular signal used for this test, along with the 

steady state estimate, is shown in Figure 2.18.  The value for beginn  was determined by 

inspection to be 401.  The steady state value after the event occurs was estimated to 

be 4.28, obtained by taking the mean of the signal values after beginn .   
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Figure 2.18: Real PMU angle signal used to test filters. 

FIR and median filters were tested with filter lengths in the range of 1-99.  The 

RS and DS values obtained are shown in Figure 2.19.  As in previous tests, the DS  

 
Figure 2.19: RS and DS values for median and FIR filtering of a real PMU angle 
signal. 
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values are the same for a given filter order or median length, and the median filter has 

a lower RS value than the FIR filter for all filter lengths except one (the filter length of 

29).  As in the previous tests, the median filters are able to preserve the edge shape 

(lower RS value) for the same amount of delay (DS value).   

 
Figure 2.20: PO values for median and FIR filtering of a real PMU angle signal. 

The final metric, percent overshoot, is displayed in Figure 2.20.  Based on the 

results shown in Figure 2.15, the expected monotonic decrease in PO values for 

increasing FIR filter orders is clearly seen.  The characteristics of median filtering are 

more difficult to characterize; for median window lengths which closely match the 

oscillation period of the original signal, the median filter does an excellent job of 

eliminating oscillations and results in very low overshoot values.  On the other hand, 

as the median window length increases, the PO value increases.  This is not desirable, 
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as it indicates an increased amount of delay and processing time is actually reducing 

the effectiveness of the filter.  This type of behavior is also seen in Figure 2.16 and 

shows that the median filter is not as robust as FIR filtering, particularly if the 

oscillation frequencies are either unknown or widely varying. 

2.5 Conclusions 

The sensitivity of the filter response to oscillation frequencies is much more 

prominent in median filtering than in FIR filtering.  For systems in which the 

postevent oscillation frequencies are easily predicted and at specific frequencies, 

median filtering can provide much better edge preservation while maintaining low 

percent overshoot.  On the other hand, for systems with broad ranges of oscillation 

frequencies, higher-order FIR filtering is more robust. Because the oscillations seen 

on a system are due to an array of factors, including the type of event and the event 

location, it is recommended that FIR filtering be used to maintain robustness.  The 

main downside of FIR filtering, edge distortion, is accounted for in the determination 

of observedθΔ , as discussed in the following chapter. 
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3 DETECTION OF EVENTS USING PMU DATA 

3.1 Event Detection and Determination of the Angle 
Change Vector 

3.1.1 Basic procedure 

The raw angle measurements are first filtered using one of the methods presented 

in the previous chapter, with the output of the filter named [ ],i filt nθ  for the filtered 

phasor angle measurements from bus i.  Once the angles have been filtered, a 

candidate angle change signal [ ],i candidate nθΔ  is constructed for each bus i: 

 [ ] [ ] [ ], , ,i candidate i filt i filt transn n n Nθ θ θΔ = − −  (3.1) 

where transN  is the number of samples over which the difference in angles is 

calculated (see Figure 3.1). 

 
Figure 3.1: Definition of Ntrans, which is used to generate candidate signals 
Δθi,candidate[n]. 
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Figure 3.2: Peak detection and determination of the angle change vector. 

To detect whether an event has occurred, a method commonly used in edge 

detection [30] was adapted for our purposes.  The first step in the process is to 

continuously compare each of the candidate signals [ ],i candidate nθΔ  against a threshold 

value τ .  If the candidate signal at bus j exceeds the threshold value at sample initialn , 

candidate signal [ ],i candidate nθΔ  is then tracked for initialn n>  until it begins to 

decrease.  A decrease implies that the maximum of [ ],i candidate nθΔ  has been reached, 

and the observedΔθ  vector is then constructed using the angle information from all of the 

buses.  The pseudo-code for this “hill climbing” procedure, visualized in Figure 3.2, 

is: 
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  After maxn  has been determined according to (3.2) using the angle information from 

bus j, the observed angle change vector is then constructed using the maxn  samples 

from all of the candidate signals: 

 

[ ]
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n
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 (3.3) 

A key assumption is needed for (3.3) to truly represent the change in steady state 

angles at all buses—namely, that the maxn  value obtained from the measurements at 

bus j corresponds to the steady state changes at the other buses.  This assumption will 

be correct if there is a constant delay in the transition from the old to new steady-state 

angles at each bus in the system (i.e., the DS and RS values are the same for the angle 

signal at each bus).  For coherent systems, such as regional networks, this is likely to 

be the case.  For large interconnected systems, different buses may reach their steady-

state value at a later or earlier time than the first signal to cross the thresholdτ .  If this 

behavior is expected, (3.2) can be run independently for each measurement as it 

passes the threshold, in which case the maxn  value used in (3.3) would potentially be 

different for each bus.  
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3.1.2 Parameter selection 

3.1.2.1 Transition samples ( transN ) 

 

Figure 3.3: Illustration of the relationship between transN  and observedθΔ . 

There are two key parameters involved in both the event detection and angle 

change vector determination as formulated in the previous section: transN  and τ .  The 

first parameter, transN , is the number of samples over which the difference in angle 

measurements is taken.  Figure 3.3 illustrates how different values of transN  impact the 

accuracy and delay in determination of observedθΔ .  The value ( )1
transN  represents the 

case where transN  is lower than the number of samples over which the transition 

occurs.  The resulting observedθΔ  underestimates the true change in angles, actualθΔ .  

The second value shown, ( )2
transN , represents the case where transN  is optimal and 
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observedθΔ  is equal to actualθΔ .  The third value, ( )3
transN , represents the case where 

transN  is larger than the number of samples needed to transition between states; in this 

case, it takes longer for the candidateθΔ  signal to decrease below actualθΔ .  The result 

of this delay is that the while loop condition in (3.2) will take longer to become false, 

thereby delaying the detection of the event. 

Based on the results shown in Figure 3.3, upper and lower bounds on transN  can 

be described.  The lower bound on transN  is based on the need for the entire transition 

region to fit inside transN  samples (otherwise the resulting observedθΔ  signal will 

underestimate the true difference in steady state angle values as with ( )1
transN ).  A new 

quantity is defined to measure how well a given value of transN  contains the transition 

band : 

 miss observed actualθ θ θΔ = Δ − Δ  (3.4) 

Because RS provides a measure of the number of samples in the transition from the 

pre- to postevent angles, RS can be considered a lower bound for transN  when using a 

particular filter.  An upper bound on transN  is more difficult to quantify; however, 

choosing too large of a value for transN  could result in misidentification of the pre-

event steady state angle and will delay the number of samples before the while loop in 

(3.2) is exited.  To measure this last effect, a new quantity is defined, whilen , 

representing the number of samples spent inside of the while loop of (3.2).  The 

longer the algorithm spends in the while loop, the longer it takes for the event to be 

detected; as a result, minimizing whilen  is essential for obtaining timely event 

information.  The optimal transN  can then be described as the value which minimizes 
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missθΔ  and whilen .  Referring back to Figure 3.3, ( )1
transN  is a poor choice because it 

results in large missθΔ  and whilen  values, ( )3
transN  is a poor choice because it results in a 

large whilen  value, and ( )2
transN  is the best choice because it minimizes both missθΔ  and 

whilen . 

 
Figure 3.4: Simulated PMU angle signal used to evaluate edge detection parameters. 

To examine the effects of transN  on a PMU angle signal, the algorithm defined in 

(3.2) was run on the simulated PMU angle signal shown in Figure 3.4, with the 

threshold τ  set to 0.57 degrees (the maximum error bound from the IEEE PMU 

standard [27]).  Because of the different behavior of FIR and median filtering, 

particularly with respect to RS, both filter types were evaluated, with filter lengths 

ranging from 1 to 99 samples.   
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Figure 3.5: Δθmiss and nwhile values using 61-order FIR and median filtering as Ntrans 
values range from 1 to 500 samples. 

Figure 3.5 shows the missθΔ  and whilen  values using FIR and median filters of 

length 61 as transN  values range from 1 to 500 samples.  The median filter is able to 

minimize missθΔ  with shorter values of whilen ; this is due primarily to conservation of 

the step change after the median filter is applied and is directly related to the lower RS 

values associated with median filtering as described in the previous chapter.  On the 

other hand, the FIR filter results in a better missθΔ  value as transN  gets very large 

(0.0237 degrees vs. 0.0336 degrees); this indicates that FIR filtering, for a given filter 

length, is slightly better at filtering out the oscillations present in the original signal.  

This result corresponds to the reduced PO values associated with FIR filtering, as 

discussed in the previous chapter.  Therefore, the choice of using an FIR or median 
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filter is a tradeoff between minimizing missθΔ (for which FIR filtering is best) and 

whilen  (for which median filtering is best).  Similarly, the choice of transN  is also a 

tradeoff between accuracy and delay—a larger value of transN  tends to increase the 

value of whilen  while reducing the value of missθΔ . 

In Figure 3.5, the whilen  values level off after transN  exceeds a certain value for 

filter lengths of 61.  This is because the filters are not able to completely eliminate the 

overshoot in the original signal; as a result, the problem illustrated with ( )3
transN  in 

Figure 3.3 does not occur.  In contrast, Figure 3.6 shows that using a much higher 

order filter (in this case, with a length of 147) results in enough attenuation that the 

case illustrated by ( )3
transN  does occur for FIR filtering.  This phenomenon does not 

occur using median filtering because of the discontinuities present in the final signal 

as shown in Figure 3.7. 

 
Figure 3.6: nwhile values using a filter length of 147 FIR and median filtering as Ntrans 
values range from 1 to 250 samples. 
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Figure 3.7: Filtering signals obtained using FIR and median filtering of length 147. 

3.1.2.2 Difference threshold (τ ) 

The threshold value τ  must also be chosen with care, because setting the 

threshold value too high might result in missing events that only result in small angle 

changes (e.g., outages of lines with low pre-outage flow), whereas choosing a 

threshold value which is too low could result in misclassification of noise as an event.  

Because the IEEE standard governing PMU behavior [27] requires angle 

measurements to be accurate within 0.57 degrees of the true angle value, this can 

serve as a useful upper bound on the threshold value.  A useful lower bound on τ  is 

more difficult to specify, primarily due to the lack of documentation detailing the 

performance of PMUs from different manufacturers.  One lower bound is the 

accuracy of the GPS timing signals, approximately 0.5 μs, which translates to a 0.01-

degree phase error [27].  In addition, a study of PMUs manufactured by Schweitzer 

Engineering Laboratories indicates that they are accurate to within 0.01 degrees [63] 

for a nominal system signal.  The ultimate choice of τ  must balance the occurrence 

of false positives (setting τ  too low and incorrectly triggering on nonevents) with 

false negatives (setting τ  too high and neglecting to trigger on events).  In addition, 

usage of filtering to attenuate noise allows for a lower τ  without increases in false 
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positives; therefore, there is a tradeoff between the lower bound on τ  and the filter 

length.  This can also be considered as a tradeoff between delay and event 

misclassification, where increasing delay results in less misclassification.   

3.2 Single-Line Outage Detection 

3.2.1 Analytical basis for single-line outage detection 

When E  is restricted to a set of single line outages on the system, then the 

problem defined in (1.3) becomes 

 
{ }

( )( )
*

1,2,...,

line outaged 

arg min min
l

observed l lPl L

l

deltaAngles P
∈

=

Δ −θ
 (3.5) 

where L is the number of lines in service before the event is detected and 

( )l ldeltaAngles P  is a function which returns the estimated change in angles for the 

outage of line l with a pre-outage flow of lP .  Because lP  is unknown a priori, it is 

allowed to vary in order to achieve the best match in observed and calculated angles.  

Therefore, a unique solution of (3.5) requires that each line outage be distinguishable 

from the outage of other lines regardless of the pre-outage flow on each line. Solution 

of (3.5) requires the ability to relate the pre-outage flow on a line l to the observed 

angle changes on that line if it were to be outaged (represented by ( )l ldeltaAngles P ).  

A simple expression for ( )l ldeltaAngles P  is obtained if the dc power flow equations 

(1.1) are used.  When the dc power flow equations are used, the effect of the outage of 

a line l can be approximated by a power transfer between the line’s “from” bus lfrom 

and its “to” bus lto  [65].  The transfer amount lP�  can be determined from the 

following equation: 
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PTDF −

=
−

�  (3.6) 

where lP  is the pre-outage flow on line l defined as positive if flowing from lfrom to lto.  

The value , from tol l lPTDF − is the power transfer distribution factor (PTDF) relating the 

change in flow on line l due to a transfer from bus froml  to bus tol  and can be 

calculated using only topology and impedance information if the dc power flow 

assumptions are used [65].  If the denominator is zero (i.e., , 1
from tol l lPTDF − = ), this 

indicates that the line constitutes a radial connection between two otherwise 

disconnected systems and the outage cannot be represented as a transfer across the 

line.  In this case, the changes in generator dispatch in the disconnected systems must 

be modeled to capture the line outage.  Section 3.3 below proposes methods for 

modeling generation redispatch. 

If the power transfer lP�  is imposed on the system, then a change in angles occurs 

at all buses.  To distinguish the observable angles from the complete set of angles at 

all buses, a K N× matrix K is introduced:  

 ( )K K K N K× × −
⎡ ⎤= ⎣ ⎦K I 0  (3.7) 

where K is the number of phasor angles observable from the PMUs, N is the total 

number of system buses, K K×I is the K K×  identity matrix, and ( )K N K× −0  is a 

( )K N K× −  matrix of zeros.  The set of angle changes at the observable buses, which 

is denoted as ,
lP

calc lΔθ � , is then found by applying Equation (1.1): 
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 (3.8) 

As shown in (3.8), the changes in angles are linear with respect to lP� ; therefore, 

the calculated changes in angles for a particular pre-outage flow on line l can be 

written as a scalar lP�  multiplying a constant vector ,calc lΔθ� .  In turn, (3.5) can be 

rewritten with ( )l ldeltaAngles P  replaced by the appropriate scalar-vector product: 

 
{ }

( )
*

,
1,2,...,

line outaged 

arg min min
l

observed l calc lPl L

l

P
∈

=

Δ −θ Δθ
�

��  (3.9) 

The optimization given in (3.9) can be performed very quickly using dot 

products.  To see why this is the case, first consider two arbitrary vectors a and b.  

From linear algebra, it is known that the projection of b onto a, projab , is the vector 

that minimizes b - ka, where k is allowed to take on any value [66].  The formula for 

calculating projab  is 

 
*

*

arg min
k

k k

proj k

⋅
= = −

⋅
=a

a b b a
a a

b a
 (3.10) 

Comparing Equations (3.9) and (3.10), the inner minimization of (3.9) can be 

rewritten as 
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The inner minimization can then be eliminated and the complete minimization 

rewritten using dot products: 
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 (3.12) 

Some manipulation of (3.12) can provide additional intuition into the nature of the 

minimization process.  Consider first the expansion of the norm into dot products: 
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 (3.13) 

The last expression indicates that the minimization of (3.12) is equivalent to the 

maximization of the dot product between the normalized observedΔθ  and ,calc lΔθ�  
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vectors.  Furthermore, maximization of the dot product is equivalent to minimization 

of the inverse cosine: 
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This last expression indicates that the line outage which best matches the observed 

angle changes is the one which has a ,calc lΔθ�  vector that matches the direction of the 

observedΔθ  vector.  A normalized angle distance (NAD) metric is defined to quantify the 

difference in the direction between the observed and expected angle changes for each 

line: 
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, ,
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2
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θ θ Δθ Δθ

�
� �

 (3.15) 

As shown in Figure 3.8, an NAD value of 0 would correspond to a perfect match 

between the expected and observed angle changes and the maximum NAD value of 

2  would correspond to the worst possible match (where observedΔθ  and ,calc lΔθ�  are 

perpendicular). 

 
Figure 3.8: Normalized angle difference (NAD) metric. 
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3.2.2 Basic single-line outage event detection algorithm 

In order to detect a line outage, identify the outaged line, and determine the pre-

outage flow on that line, the following basic algorithm is used: 

1. For each line l: 

a. Calculate ,calc lΔθ�  using (3.8). 

b. Calculate *
lP�  using (3.11). 

c. Calculate the NAD value for line l using (3.15), then store the 

calculated error value in the indexed array NADVals: 

 l lNADVals NAD=  (3.16) 

2. Determine the line *l that was outaged by sorting NADVals: 

 * arg min l
l

l NADVals=  (3.17) 

3. Determine the pre-outage flow on the line which best fits the observed angle, 

*
*

l
P , using (3.6): 

 ( )* * * * *
* *

,
1

from tol l l l l
P P PTDF

−
= −�  (3.18) 

3.2.3 Computational complexity 

To calculate the angle change due to the outage of a line l using (3.8), the B 

matrix must be factored using LU decomposition [67].  This is the most expensive 

operation in the algorithm, but it only needs to be performed once per change in 

topology.  Once B is factored, ,calc lΔθ�  and the necessary PTDF values can be 

computed using forward and backward substitution.  In addition, because only certain 

elements of the angle vector are needed, fast-forward and fast-backward solution can 

be used to reduce computation time.  Outside of step 1.a, the algorithm requires only 
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addition and dot products with vectors of dimension K and a sort operation.  These 

last operations are highly parallelizable and would see performance gains on the order 

of the number of computing cores available. 

3.2.4 Heuristic modifications to the basic algorithm 

Additional information is available about the power system, and this information 

can be exploited to reduce the search space and improve the performance of the line 

outage detection algorithm.  One useful modification is to reject potential outages 

requiring excessive pre-outage flow on the line in question.  For the studies presented 

below, this was set to either 150% of the line rating in MVA or 5 GW in cases where 

the rating was unavailable.  In addition, system experts may be capable of evaluating 

potential outages for their feasibility; to facilitate evaluation by operators, the 

algorithm can easily output the top outage candidates, along with estimated pre-

outage flows.  

3.3 Generator Outage Detection 

3.3.1 Analytical basis for generator outage detection 

As with single-line outages, the basic event detection formulation from (1.3) is 

first restricted to the set of generator outages: 

 
{ }

( )( )
*

1,2,...,

generator outaged 

arg min min
l

observed g gPg G

g

deltaAngles P
∈

=

Δ −θ
 (3.19) 

In (3.19), ( )g gdeltaAngles P  represents the expected changes in observed angles due 

to the outage of generator g which, before the outage, is generating Pg. As with the 
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single-line outage detection, the dc power flow equations are used to derive an 

expression for ( )g gdeltaAngles P . 

Unlike in the line outage case, there are nonzero changes to power injections on 

the system upon the outage of a generator.  In typical power flow studies, the pickup 

of the remaining generators is modeled in a variety of ways.  One common method is 

through the designation of a slack bus which, upon the outage of a generator on the 

system, will pick up the “slack” left by the outaged generator.  In this case, the power 

injection vector would have only one nonzero entry at the row corresponding to the 

outaged generator.  This method is the easiest way to account for changes in 

generation, but it does not factor in the characteristics of the system’s generators.   

In real system operations, a loss in generation is usually picked up by a 

combination of the remaining generators rather than just one.  Usage of participation 

factors attempts to capture this behavior.  In this method, the entry for each generator 

bus in the power injection vector is determined based on the participation factor ( pf ) 

of the corresponding generating unit, i.e. : 

 

{ }

1

2

1,2,..., \
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outaged generator

1

g

g

g

G g

i
i G g

pf P
pf P

P
P

pf P
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∈

×⎡ ⎤
⎢ ⎥×⎢ ⎥
⎢ ⎥

Δ = ⎢ ⎥− ←⎢ ⎥
⎢ ⎥
⎢ ⎥

×⎢ ⎥⎣ ⎦
=∑

#

#
 (3.20) 

The summation in (3.20) ensures that all generation lost by the outaged unit g is 

picked up by the remaining units.  The assumption implicit in having the participation 

factors sum to one is that changes in losses on the system are negligible; if this is not 
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the case, then the right-hand side of the equality can be modified to reflect the 

expected changes in losses.   

While the formulation in (3.20) is much more flexible than the slack bus 

approach, the validity of (3.20) is dependent on the accuracy of the participation 

factors used.  These factors are commonly used in contingency analyses and are, as a 

result, available on an area-wide basis for many control areas; however, a systemwide 

database of participation factors is unavailable.  Nonetheless, participation factors can 

be estimated based on the characteristics of each generator [68] which are available 

from systemwide dynamic models.  For short term redispatch of generation, one of 

the key determining factors is each generator’s droop and machine base.  Droop, 

otherwise known as speed regulation, is defined as follows [68]: 

 
no load full load

nominal no load full load
max

nominal
max

decrease in frequency
nominal system frequency

100%
increase in power output
maximum power output

100% 10
0

R

f f
f f f

fP
P

⎛ ⎞
⎜ ⎟
⎝ ⎠= ×
⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞−
⎜ ⎟ ⎛ ⎞−⎝ ⎠= × = ×⎜ ⎟⎛ ⎞− ⎝ ⎠

⎜ ⎟
⎝ ⎠

0%

 (3.21) 

The subscripted f quantities refer to electrical frequency at various operating 

conditions (no load, full load, and nominal system frequency), and maxP  refers to the 

maximum power output of the generator, which is assumed to be the same as the 

machine base.  For example, if the droop of a generator is 1%, then a 1% deviation in 

frequency (normalized to system frequency) results in a 100% change in power output 

of the unit.  Figure 3.9 provides an illustration of droop for a single generator. 
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Figure 3.9: Illustration of droop characteristics. 

Whenever there is a frequency change on the system, this frequency change will 

propagate throughout the electrical network and affect the output of each generator 

which is still connected to the system based on droop settings.  If each generator i  

that is connected to the system has a droop value of iR  and maximum power output of 

max
iP , the following relations must hold:  

 1 2
1 2max max max

1 2 nominal

G
G

G

PP P fR R R
P P P f

ΔΔ Δ Δ
= = = ="  (3.22) 

after the new system frequency has been reached.  The change in frequencies, fΔ , is 

measured at each PMU and is provided in the PMU data set; however, a priori 

knowledge of which generators are connected to the system is required to determine 

iPΔ  via (3.22).  To calculate iPΔ  if generator g has lost connectivity, (3.20) and (3.22) 

can be combined: 
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This set of equations is solvable for the participation factors using the following set of 

linear equations: 
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The participation factors obtained via (3.24) can then be used with (1.1), (3.7), and 

(3.20) to estimate the changes in angles for the outage of generator g providing pre-

outage power gP : 
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As with the single-line outage events, the expected changes in angles due to a 

generator outage can be represented as a scalar-vector multiplication.  As a result, 

similar analysis provides the optimizing gP  value for a given observed change in 

angles: 

 

,*

, ,
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, ,min

g

observed calc g
g

calc g calc g

observed g calc g observed g calc gP

P

P P

Δ ⋅
=

⋅

Δ − = Δ −

θ Δθ
Δθ Δθ

θ Δθ θ Δθ
 (3.26) 

In addition, an NAD value can also be defined for generator outages: 
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3.3.2 Verification of droop-based participation factors 

To verify the usefulness of droop-based participation factors, generator outages 

were run for each of the nine generators within the system described in 0.  Each 

generator uses an IEEEG1 model [69] with GK  set to 20 (i.e,  droop set to 5%).  

Using these values, the differences between the participation factors estimated from 

Equation (3.24) and calculated from dynamic simulation were calculated for each 

outage at each sample time t, where t = 0 corresponds to the time of the outage event: 
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The droop-based participation factors require the change in frequency seen by 

each generator to be the same.  To quantify how well the frequencies on the system 

match this condition, a frequency deviation quantity is defined: 
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 (3.29) 

where gfΔ  is the change in frequency from the pre-outage frequency at the bus 

generator g is connected to.  Figure 3.10 shows that the frequency difference between 

the generators takes between 10 and 20 s to reach zero, which implies that the 

condition given in (3.22) will only be reached 10 to 20 s after the outage occurs. 
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Figure 3.10: Evolution of frequency difference  fdiff  over time for each generator 
outage. 

The PFD values, which reflect the deviation between the participation factors 

based on droop and the true participation factors, reach zero several seconds after the 

frequency deviations reach zero.  If the droop response were instantaneous, then PFD 

would decay along with difff ; however, because there are delays in regulation due to 

machine inertia and governor delay, there is a lag of several seconds between the 

frequency deviations going to zero and the PFD value going to zero.  Comparing 

Figures 3.10 and 3.11, it is clear that regulation delay results in the PFD values for 

each outage reaching a minimum several seconds after the difff  value reaches zero. 
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Figure 3.11: Evolution of PFD values over time for each generator outage. 

The PFD values for each generator outage are provided in Table 3.1 using 

frequency and power output values 20 s after the outage event (i.e., at the rightmost 

point in Figure 3.11).  The results shown in Table 3.1 are promising in that they 

indicate droop-based participation factors can provide a very close approximation 

(<2% error) to the true participation factors. 

Table 3.1: Accuracy of droop-based participation factors using model parameters 
Generator 

Outaged 
WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69 

PFD  1.60% 1.67% 1.48% 1.72% 1.60% 1.59% 1.56% 1.00% 

For each generator outage, the actual droop can be determined using (3.21) based 

on the change in frequency and power output at each generator.  The mean and 

standard deviation (taken over the set of nine generator outages) in the simulated 

droop values for each of the generators are provided in Table 3.2.  Although the 

values are different than the 5% value specified in the generator governor models, the 
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low standard deviation indicates that determining droop values through offline 

simulation is a viable means of correctly assessing the droop.  Using the droop values 

in Table 3.2 instead of the 5% value specified in the governor models, the PFD values 

after 20 s were evaluated again. 

Table 3.2: Droop means and standard deviations determined from simulation 
Generator: WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69 

Droop mean 4.93% 4.81% 4.91% 4.84% 4.94% 4.91% 4.81% 4.64% 

Droop st. dev. 0.02% 0.02% 0.01% 0.01% 0.01% 0.02% 0.01% 0.01% 

The PFD determined using the droop values of Table 3.2 are provided in Table 

3.3.  The usage of the droop values from Table 3.2 provides a more accurate 

representation of the generator response, as evidenced by the decrease in the PFD 

values for each of the generator outages.   

Table 3.3: Accuracy of droop-based participation factors using Table 3.2 droop values  
Generator 

Outaged 
WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69 

PFD  0.36% 0.06% 0.08% 0.07% 0.13% 0.06% 0.13% 0.10% 

Additional tests were run with the droop value for the generator at bus WEBER69 

set to 10% rather than 5% to test the sensitivity of this method with respect to 

individual generator droop settings.  Table 3.4 provides the droop means and standard 

deviations determined from simulation.  The droop values for all buses except for 

WEBER69 stay the same as in Table 3.2, while the WEBER69 droop is 

approximately 10% as specified in the model of the governor at this generator. 

Table 3.4: Droop means and standard deviations determined from simulation, with 
WEBER69 droop set to 10% instead of 5% 

Generator: WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69 

Droop mean 9.74% 4.81% 4.91% 4.84% 4.94% 4.91% 4.81% 4.64% 

Droop st. dev. 0.06% 0.02% 0.01% 0.01% 0.01% 0.02% 0.02% 0.01% 
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Using the droop values in Table 3.4, participation factors were calculated using 

(3.24) and the PFD  values given in Table 3.5 were determined 20 s after the outage.  

These low error values demonstrate that droop-based participation factors are 

effective in modeling generator response independently of the droop value, as long as 

sufficient time is allowed for the generators to reach the operating points specified by 

their respective droop settings.  

Table 3.5: : Accuracy of droop-based participation factors using Table 3.4 droop 
values, with WEBER69 droop set to 10% instead of 5% 

Generator 
Outaged 

WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69 

PFD  0.39% 0.07% 0.13% 0.05% 0.14% 0.05% 0.14% 0.11% 

3.3.3 Basic generator outage detection algorithm 

Because the expected angle changes for a single-line outage and a generator 

outage can both be expressed as scalar-vector multiplications, the algorithms are very 

similar:   

1. For each generator g: 

a. Calculate ,calc gΔθ  using (3.25). 

b. Calculate *
gP  using (3.26). 

c. Calculate the NAD value for generator g using (3.27), then store the 

calculated error value in the indexed array NADVals: 

 g gNADVals NAD=  (3.30) 

2. Determine the generator *g that was outaged by sorting NADVals: 

 * arg min g
g

g NADVals=  (3.31) 

3. Report back the estimated pre-outage generation *
*

g
P  calculated in step 1.b. 
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3.3.4 Computational complexity 

Although the methods used to determine the most likely single line outage and 

generator outage events are very similar, there are two key differences.  The first 

difference is in the density of the PΔ  vector used to calculate ,calc gΔθ .  In the single-

line outage case, the PΔ  vector has only two nonzero entries corresponding to the 

from and to buses of the outaged line.  With generator outages, the PΔ  vector will 

have nonzero entries at each bus with an online generator attached.  This is typically a 

small subset of the total number of system buses, but may result in increased 

computation time.   

The second key difference is that there are fewer generators than lines within a 

power system, so the number of events is drastically reduced.  This reduction in 

events causes fewer calculations of calcΔθ  and NAD  values and a faster sort 

operation in determining the most likely generator outage. 

3.3.5 Heuristic modifications to the basic algorithm 

By taking advantage of known generator ratings, it is possible to further restrict 

the event set.  The way this is handled in the algorithm is to remove generators from 

consideration if the estimated pre-outage generation is greater than 1.5 times the 

rating of the generation.  The extra 50% leeway allows for possible errors introduced 

by the dc power flow assumptions, participation factor selection, and errors in 

determining observedθΔ . 
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3.4 Double-Line Outage Detection 

3.4.1 Analytical basis for double-line outage detection 

When E  is restricted to the set of double-line outages on the system, then the 

problem defined in (1.3) becomes 

 
{ }

{ } { } { }
( )

1 2
,1 ,21 2

* *
1 2

, ,1 ,2,, 1,2,..., 1,2,...,

lines outaged ,

arg min min ,
l l

observed l l l lP Pl l L L

l l

deltaAngles P P
∈ ×

=

⎛ ⎞Δ −⎜ ⎟
⎝ ⎠

θ
 (3.32) 

where L is the number of lines in service before the event is detected and 

( )
1 2, ,1 ,2,l l l ldeltaAngles P P  is a function which returns the estimated change in angles for 

the outages of lines 1l  and 2l  with pre-outage flows of ,1lP  and ,2lP , respectively.  

Because the pre-outage flows are unknown a priori, each is allowed to vary in order to 

achieve the best match in observed and calculated angles.   

To characterize the function ( )
1 2, ,1 ,2,l l l ldeltaAngles P P  under the dc power flow 

assumptions, the outages are modeled by power injections at the terminal buses of the 

outaged lines.  Figure 3.12 illustrates the relevant quantities used to model a double-

line outage.  Based on the flows and injections shown in Figure 3.12, the following 

two equalities must hold for the flow from the rest of the system to the outaged lines, 

1F  and 2F , to be zero: 
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1 2, 2,
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 (3.33) 
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Figure 3.12: Double-line outage model with power injections. 

Rewriting this in matrix form, an expression for ,1lP��  and ,2lP��  in terms of PTDFs and 

pre-outage line flows can be obtained: 

 1 1, 1, 1 2, 2,

2 1, 1, 2 2, 2,

1
, ,,1 ,1

,2, ,,2

1

1
from to from to

from to from to

l l l l l ll l

ll l l l l ll

PTDF PTDFP P
PPTDF PTDFP

−
− −

− −

⎡ ⎤ − −⎡ ⎤ ⎡ ⎤⎢ ⎥ = ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

��
��

 (3.34) 

The inverse matrix in (3.34) exists only if the outage of the two lines does not result in 

islanding [70].  If the lines do result in islanding of the system, then the outages 

cannot be modeled as transfers across the lines and must instead be modeled as 
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changes in power injection at the boundary buses of the original system, taking into 

account any necessary redispatch of generation as discussed in Section 3.3.1.   

Using the formula for the inverse of a 2 x 2 matrix, the solution in (3.34) can be 

rewritten: 

 

( )( )
( )( )

1 1, 1, 2 2, 2,

2 1, 1, 1 2, 2,
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 (3.35) 

Once the double outage model injection vectors, ,1lP��  and ,2lP�� , are obtained, the 

resulting change in angles can then be determined: 
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 (3.36) 

Note that the ,calc lΔθ�  vectors in (3.36) are the same vectors defined in (3.8) for single-

line outage modeling.  The optimization of (3.32) can then be rewritten in terms of the 

vectors defined in (3.36): 
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If 
1,calc lΔθ�  = 

2,calc lΔθ� , which occurs if line 1l  and 2l  are in parallel, then it is possible to 

easily determine the values of ,1lP��  and ,2lP��  which result in the best match with 

observedΔθ .  In this case, the following one-dimensional minimization is performed: 
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 (3.38) 

Using the *
,1,2lP��  scaling factor, it is possible to determine the pre-outage flows on each 

of the parallel lines: 
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 (3.39) 

The last expression is based on the fact that the same angle difference exists across 

both lines, so the flows must be in proportion to their reactances.  Figure 3.13 

provides a graphical depiction of the relevant quantities used to derive the equations 

in (3.39) which model a parallel line outage with power injections. 
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Figure 3.13: Modeling the outage of two parallel lines with a power transfer. 

If the outage of the parallel lines results in island formation, then 

( )1 1, 1, 2 2, 2,, ,1
from to from tol l l l l lPTDF PTDF− −− −  will be equal to zero and modeling of the double 

line outage must account for changes in generation due to islanding. 

For cases where the lines are not in parallel, the minimization in (3.37) can be 

solved as a least squares minimization: 
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 (3.40) 

Using the optimal injections defined in (3.40), the optimization of (3.37) can be 

simplified further: 
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The normalized angle distance (NAD) metric can also be extended to double-line 

outage events as follows: 
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With the error metric properly defined, the algorithm can be defined for double-line 

outage event detection, which closely aligns with those for single-line and generator 

outage events. 
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3.4.2 Basic double-line outage event definition algorithm 

In order to detect double-line outage events, identify the outaged lines, and 

determine the pre-outage flows on the lines, the following basic algorithm is used: 

1. For each line [ ]1 1,l L∈  

a. Calculate 
1,calc lΔθ�  using (3.36). 

b. For each line [ ]2 1 1,l l L∈ +  

i. Calculate 
2,calc lΔθ�  using (3.36). 

ii. Calculate *
,1lP��  and *

,2lP��  using (3.40) for nonparallel lines or *
,1,2lP��  

using (3.38) for parallel lines. 

iii. Calculate the NAD value for the double outage { }1 2,l l using 

(3.42), then store the calculated error value in the indexed array 

NADVals: 

 { } 1 21 2 ,, l ll lNADVals NAD=  (3.43) 

2. Determine the lines { }* *
1 2,l l that were outaged by sorting NADVals: 

 { } { }1 2
1 2

* *
1 2 ,

,
, arg min l l

l l
l l NADVals=  (3.44) 

3. Determine the pre-outage flows on the lines which correspond to the optimal 

double outage model injections using (or (3.39) for parallel lines): 
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 (3.45) 

 

3.4.3 Computational complexity 

The extension of events from single- to double-line outages can greatly increase 

both storage and computational demands.  The key difference between evaluating 
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single- and double-line outages is the number of potential events.  For single-line 

outage events, only L events need to be considered, if L is the number of lines which 

are currently in service.  On the other hand, for double-line outages, the number of 

considered events is 
2
L⎛ ⎞

⎜ ⎟
⎝ ⎠

, or ( )1 / 2L L −⎡ ⎤⎣ ⎦ .  For a typical system, with lines 

numbering in the tens of thousands, this can represent a tremendous increase in the 

amount of work needed to find the minimizing event.   

3.4.4 Heuristic modifications to the basic algorithm 

There are several ways to reduce the dimensionality of the search space, with a 

tradeoff between consideration of improbable events and reduction in storage and 

computational burden.  One method is to filter the event set to only include outages 

with probability above a certain threshold Probthreshold : 

 { }
{ } { } { } { }( )

( )
1 2 1 2

* *
1 2

, 1,2,..., 1,2,..., ,Prob , Prob
lines outaged , arg min

thresholdl l L L l l
l l

∈ × >
= "  (3.46) 

The probability data needed to execute the filtering in (3.46) should be based on 

detailed modeling or operational data.  Unfortunately, this data is currently 

unavailable over the wide area; however, the need for this data to improve event 

identification could serve as a motivating factor to improve the collection and 

distribution of outage statistics. 

A second way of filtering the event set is to account for the geographic proximity 

of two lines on the system.  Simultaneous line outages have a tendency to occur in 

shared rights of way [71], and the wide availability of line locations makes this option 

more feasible than (3.46).  The basic formulation of this filtering method is 
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1 2 1 2
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, 1,2,..., 1,2,..., , ,
lines outaged , arg min

thresholdl l L L d l l d
l l

∈ × <
= "  (3.47) 

where a distance function is defined between any two lines, ( )1 2,d l l , and this distance 

must be below a threshold value of thresholdd  for the two lines to be considered 

together.  Because line locations rarely change at the transmission level, the 

determination of ( )1 2,d l l  for each pairwise combination of lines can be stored and 

used for long periods of time.  

One simple but conservative distance metric that can be used for ( )1 2,d l l  is 
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(3.48) 

A visualization of this distance function is provided in Figure 3.14.  This formulation 

provides a lower bound on the pointwise distance between any two points in either 

line.  The first equation in (3.48) represents the solution of the minimum enclosing 

circle (MEC) problem, with the line vertices as the points to be enclosed.  This is a 

well-studied problem, and algorithms exist which can calculate ( ),
i il lx y  and the 

associated radius in ( )O in  time, where in  is the number of vertex points for line i  

[72].  Pairwise evaluation of these distances can be done very quickly once the 

( ),
i il lx y  and iR  values are known, with each distance calculation requiring only three 

add and two multiply operations. 
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Figure 3.14: Distance between two lines, as defined in (3.48). 

An alternative method of defining the distance between two lines is to use the 

minimum distance between any two points on the lines: 

 ( )
( )
( )

( ) ( )
1 1
2 2

1 2 1 1 2 2all points , line 1,
all points , line 2

, min , ,min x y
x y

d l l x y x y
∈
∈

= −  (3.49) 

This distance function is illustrated in Figure 3.15.  The relationship between mind  and 

circd  is that circd  is a lower bound on ( )1 2,mind l l , since any point on a line must by 

definition be within the MEC of the line.  The relative magnitude of mind  and circd  

depends on the line configuration, but mind  should be substantially higher since the 

MEC tends to greatly enlarge the influence region of a line, particularly for long lines. 
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Figure 3.15: Minimum distance between two lines, as defined in (3.49). 

  These distances can be calculated offline and stored in a table for later retrieval.  

Determining what the set of considered double line outages is for a given threshold is 

then a matter of looking for all entries in the table below a threshold, which can be 

greatly accelerated by utilizing sorted lists for storage.  As a result, the calculations 

involved in the filtering operation should be much lower than the search of the 

complete double outage event space and result in a net reduction in computation time 

and storage. 

To evaluate the usefulness of the filtering method defined in (3.47) and (3.48), a 

large system with 4609 lines, illustrated in Figure 3.16, was used.  The minimum 

distance between lines is zero, resulting from the case where two lines have the same 

terminal bus.  The maximum distance between any two lines is 1422 miles using circd  

and 1429 miles using mind , and the mean distance is 342 miles using circd  and 347 

miles using mind .  



 

 77

 
Figure 3.16: System used to test the impact of distance-based double-outage filtering. 

 
Figure 3.17: Percentage of double-outage events considered as a function of the 
distance threshold dthreshold using dcirc and dmin for threshold ranges of 0-1500 miles (a) 
and 0-5 miles (b). 

Figure 3.17 illustrates how the percentage of double-line outage events filtered by 

the distance function varies with the distance cutoff values ranging from 0 to 1500 

miles on the left side and 0 to 5 miles on the right side.  These results indicate that 

even a conservative threshold of 5 miles removes over 99.75% of the double-outage 

events from consideration if the larger distance mind  is used.  For real-time 

implementation, Figure 3.17 could be used to find the distance threshold 

corresponding to a defined number of events (e.g., if a maximum search time is 
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specified) or the number of events corresponding to a defined distance threshold (e.g., 

if a maximum interline distance is specified).   

The other heuristic applied to double-line outage detection is the rejection of 

potential outages when the estimated pre-outage flow is above 150% of the line rating 

or 5 GW.  This is the same heuristic used in single line outage detection and described 

above in Section 3.2.4. 
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4 EVENT DETECTION EVALUATION 

4.1 Single-Line Outage Examples 

To test the single-line outage detection algorithm, two tests were performed.  The 

first set of tests, using the system defined in Error! Reference source not found., 

examines the algorithm’s performance for each of the 56 single line outages on the 

system.  The second set examines the algorithm’s performance using real data from 

the Tennessee Valley Authority system recorded during the outage of a major 500-kV 

transmission line.   

To evaluate single-line outage detection, several performance metrics are defined.  

The first is an indicator function to signal whether or not a particular outage is 

detected by the algorithm for a given set of detection parameters: 

 ( ) 1 ,outage of line  detected
0 , otherwise

outaged
outaged

l
AboveThreshold l

⎧
= ⎨
⎩

 (4.1) 

where outagedl  is the outaged line.  Next, a metric is defined to represent the NAD value 

of the outaged line: 

 ( )
outagedoutaged lNADOutaged l NADVals=  (4.2) 

This metric indicates how well the expected and observed angles match up for the line 

that was outaged.  The rank of the outaged line in the sorted NADVals list is also 

important: 

 ( ) { }: 1
outagedoutaged l lRankOutaged l l NADVals NADVals= < +  (4.3) 

Ideally, RankOutaged would be one, indicating that the algorithm has correctly 

matched the outaged line with the observed angle changes.   
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Taken together, these metrics define whether a line outage is detected 

(AboveThreshold), how well the observed and expected angle changes match 

(NADOutaged), and how well the expected angles from the outaged line compare 

with those from other lines (RankOutaged).  

4.1.1 All 37-bus single-line outages 

The first set of tests was conducted with the system described in 0.  The 56 in-

service lines were each outaged and a transient simulation was run for 5 s after the 

outage.  For the transient simulation, the default simulation parameters were used 

from PSS/E version 31, including the default simulation time step of 1/120 s (i.e., a 

sampling rate of 120 Hz).  To simulate the data that would be obtained from a phasor 

measurement unit, the raw simulated data was downsampled to a sampling rate of 30 

Hz.  A low-pass antialiasing filter with a cutoff of 15 Hz and delay compensation was 

used to ensure that no out-of-bandwidth components were present in the simulated 

measurements.  An example of the simulated angle measurements at each bus on the 

system for the outage of the line connecting buses 28 and 31 is shown in Figure 4.1. 

The results of the transient simulation were then filtered using one of the methods 

described in Chapter 2, and the observed angle changes were determined using the 

method described in Chapter 3.1.  These results were then processed using the 

algorithm defined in Sections 3.2.2 and 3.2.4 to detect the outaged line.   
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Figure 4.1: Original simulated angles (left side) and simulated PMU angle 
measurements (right side) for the outage of the line connecting buses 28 and 31, with 
all angles referenced to the SLACK345 bus angle. 

For each study, one or more of the following parameters was varied: 

• FilterLength : the length of the digital signal filter, equal to N from (2.1) (for 

FIR filtering) or (2.4) (for median filtering) 

• τ : the threshold used to determine whether an event has occurred, defined in 

Section 3.1.1 

• PMUSet : the set of bus numbers where measured angles are available 

In addition, transN  was set to FilterLength  for FIR filtering and 
2

FilterLength⎢ ⎥
⎢ ⎥⎣ ⎦

 for 

median filtering based on the results shown in Figure 3.5. 

4.1.1.1 All buses monitored 

The first set of tests examines the effect of changing the threshold and filtering 

methods with full PMU coverage (i.e., { }all system busesPMUSet = ).  Because all 

buses are monitored, this test is designed to provide best case results for specific filter 

parameters and angle detection thresholds.   
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4.1.1.1.1 Median filtered angles 

 
Figure 4.2: Minimum threshold values and error values for each line, ordered in 
ascending order by minimum threshold, using a median filter of length 31. 

One of the two filtering methods discussed in Chapter 2 is median filtering.  The 

first parameter considered is τ , which determines how much of an angle change 

needs to occur before it is recognized as an event.  Plotted in Figure 4.2 are the 

NADOutaged and MinThreshold (the minimum value of τ  needed to detect the 

event) for each line outage on the system, sorted in ascending order by the 

MinThreshold  and using a window length of 31.  For parallel lines, only one of the 

lines is provided in this graph.  A log scale is used for both y-axes due to the widely 

varying values of MinThreshold  and NADOutaged among the set of all outaged 

lines.  Several useful insights can be obtained by analyzing this figure.  First of all, the 

minimum threshold value needed to detect every line outage is 0.01 degrees; however, 
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those events which require extremely low threshold values also have the highest 

NADOutaged  values, indicating that choosing the minimal threshold value will result 

in misclassification of these lines.  To illustrate this behavior, Figure 4.3 shows the 

average NADOutaged value, taken over all line outages, for varying values of the 

angle threshold.  The reduction in NADOutaged  as the angle threshold is brought 

past 0.03 degrees, in essence ignoring the troublesome outages between buses 15-54 

and 18-37, can clearly be seen in this plot and illustrates how the threshold value can 

impact the NADOutaged  results. 

 

 
Figure 4.3: Mean NADOutaged values for median filtering using a window length of 
31 with the angle threshold varied from 0.01 to 0.57 degrees; the left plot shows the 
right plot zoomed in to the region τ∈[0.01,0.05]. 

To understand why the NADOutaged values are so high for the outages of lines 

15-54 and 18-37, Figure 4.4 provides a detailed look at the angle changes for all 

system buses due to the outage of the line with the highest NADOutaged value, 18-37, 

using both ac and dc power flow solutions.  Because the dc power flow assumptions 

are used in constructing the expected angle changes, a failure of these assumptions to 

hold for the outage of this line is responsible for the large NADOutaged  value.  The 
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norm of the differences in angle changes between the ac and dc power flow solutions 

is 0.045 degrees for this outage, which is comparable in magnitude to the norm of the 

estimated angle changes under the dc power flow assumptions (0.04 degrees).  One 

possible reason for the poor performance of the dc power flow for the outage of the 

18-37 or 15-34 lines is that these lines have the highest R/X ratios on the system, with 

R/X = 1.82, and lines with high R/X ratios are known to cause errors in the accuracy 

of the dc power flow. 

 
Figure 4.4: Calculated changes in angles at all system buses due to the outage of a line 
connecting buses 18 and 37 using the ac and dc power flow. 

A high NADOutaged  in and of itself does not guarantee that the algorithm is 

failing to properly identify the outaged line; what really matters is where a particular 

line outage ranks in the set of ordered NAD relative to all the other possible outages.  

Figure 4.5 shows that the rank of the line in the NADVals list, RankOutaged, is indeed 
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closely tied to the NADOutaged value of the outaged line.  This figure is a scatter plot 

of NADOutaged versus RankOutaged for a wide range of filter lengths (from 3 to 61 

in increments of 2) and angle thresholds (from 0.01 to 0.57 degrees in increments of 

0.01 degrees).  As shown in the plot, for any detected event with an NADOutaged 

value less than 0.8, the algorithm correctly ranks the outaged line.  As the true system 

response becomes less similar to the response predicted by the dc power flow, 

NADOutaged gets larger and the ranking of the outaged line becomes poorer, in some 

cases resulting in rankings as high as 43 out of 56 (for the outage of the two lines 

between buses 18 and 37 using window lengths of 29 or 31 with angle thresholds of 

0.01 or 0.02 degrees). 

 
Figure 4.5: Scatter plot of NADOutaged versus RankOutaged for 84 867 detected line 
outages using window lengths from 3 to 61 in increments of 2 and angle thresholds 
from 0.01 to 0.57 degrees in increments of 0.01 degrees. 

In addition to the effect of the angle threshold on successful line outage detection, 

the window length can also have an effect on the value of NADOutaged  by changing 

the attenuation of oscillations and the estimation of the steady state angle changes.  

Figure 4.6 shows the relationship between the median window length and the average 
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NADOutaged value using a constant angle threshold value of 0.05 degrees.  There is a 

sharp decrease in the NADOutaged mean as the filter length is increased from 3 to 19, 

then a more gradual decrease as the filter length is increased further.  This 

corresponds to the results shown in Figure 3.5, where missθΔ shows a rapid decay for 

small window lengths and a more gradual decay for larger window lengths.   

 
Figure 4.6: Effect of median window length on the mean NADOutaged value using an 
angle threshold of 0.05 degrees. 

 
Figure 4.7: Elimination of an oscillation in the BLT138 bus angle signal for the 
outage of line 47-53 as the median window length is changed from 9 to 41. 

The decrease in NADOutaged as the window length is increased is due to 

improved attenuation.  As an illustrative example, Figure 4.7 shows an oscillation in 
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the angle signal of bus BLT138 that is eliminated as the median window length 

changes from 9 to 41. 

4.1.1.1.2 FIR filtered angles 

The same outage cases were also analyzed using FIR filtering to determine the 

angle change vectors.  A graph analogous to that of Figure 4.2 showing the 

MinThreshold and NADOutaged values for each of the lines in the system is provided 

in Figure 4.8.  The same problem at the low end of the graph can be seen—lines 

which require very low threshold values have high NADOutaged values.  This shows 

that the disparity between the ac and dc power flow solutions (e.g., as shown in Figure 

4.4) cannot be compensated for by changing the filtering method and is a fundamental 

limitation due to the usage of the dc power flow equations to detect the outage event.   

 
Figure 4.8: Minimum threshold values and error values for each line, ordered in 
ascending order by minimum threshold, using an FIR filter of order 31. 
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The usage of higher order FIR filters also has a minimizing effect on the 

NADOutaged mean, as illustrated in Figure 4.9.  Of particular note is that there are no 

portions of the curve in which the NADOutaged mean increases as the FIR filter order 

increases.  Comparing this to Figure 4.6, the inverse relationship between filter length 

and NADOutaged mean is more consistent for FIR filtering than median filtering.  

One reason for this behavior is that FIR filtering attenuates better at all oscillation 

frequencies above the cutoff frequency as the filter order is increased (see Figure 

2.15), whereas this is not necessarily the case for median filtering (see Figure 2.16). 

 
Figure 4.9: Effect of FIR filter order on the mean NADOutaged value using an angle 
threshold of 0.05 degrees. 

The scatter plot of NADOutaged versus RankOutaged in Figure 4.10 shows that 

the relationship between these two values obtained from median filtering also holds if 

FIR filtering is used, indicating that the algorithm is more sensitive to the accuracy of 

the dc power flow assumptions than the filtering method for the case where all bus 

angles are monitored.   



 

 89

 
Figure 4.10: Scatter plot of NADOutaged versus RankOutaged for 86 438 detected 
line outages using filter orders from 3 to 61 and angle thresholds from 0.01 to 0.57 
degrees. 

4.1.1.2 Eighteen buses monitored 

To examine how the algorithm performs with lower PMU deployment, additional 

tests were run with only half the buses monitored, using

{ }3,10,13,15,17,19, 21, 27, 29,31,33,35,38, 40, 44, 48,53,55PMUSet = .   

Figure 4.11 shows the NADOutaged versus RankOutaged scatter plot for FIR and 

median filtering using the same parameter range used to construct Figures 4.5 and 

4.10.  The outliers from the scatter plot using full PMU placement are no longer on 

the plot because the reduced PMU set does not result in detection of the  problematic 

line outages.  Of all the detected events, only 166 have rank not equal to one, and all 

166 of these misrankings are with the outage of line 33-50.   
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Figure 4.11: Scatter plot of NADOutaged versus RankOutaged for 82 289 detected 
line outages (FIR filtering) and 81 846 detected line outages (median filtering) using 
filter lengths from 3 to 61 and angle thresholds from 0.01 to 0.57 degrees. 

Figure 4.12 shows the RankOutaged values for all instances in which the outage 

of line 33-50 is detected with FIR and median filtering.  Each blue dot represents a 

combination of filter order and threshold such that the ranking of the 33-50 line in the 

NADVals array is 3, and each green dot represents the combination such that the 

ranking is 1.  The areas without dots represent the cases where the event was not 

detected because no candidate signals exceeded the threshold angle τ .  This figure 

demonstrates that setting the angle threshold to a low value can result in 

misclassification of lines by the algorithm.  In this case, the very small amount of 

flow on line 33-50 before the outage, 2.3 MW, results in small observed angle 

changes which are difficult to classify.  
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Figure 4.12: Detailed RankOutaged distribution for the outage of line 33-50 using FIR 
filter orders of 3-61 and angle thresholds of 0.01 to 0.57. 

One additional result of changing from having a PMU at every bus to having a 

PMU at 18 buses is how low of an NADOutaged is needed to guarantee correct 

ranking of the line, referred to as NADOutagedMin.  A higher value of 

NADOutagedMin means that more confidence can be placed in the detection 

algorithm results if the NADOutaged value for the detected line is much lower than 

NADOutagedMin.  For median filtering, the NADOutagedMin is 0.867 for complete 

PMU coverage but drops to 0.252 in the case where only 18 PMUs are placed on the 

system.  This is expected, since having more information about the system should 

allow for more confidence to be placed in the results based on that information.  

Using FIR filtering gives similar results—NADOutagedMin is 0.254 in the case where 

only 18 PMUs are placed on the system and 0.8403 for a full PMU placement. 

The biggest difference between the performance of the algorithm using full PMU 

coverage and half PMU coverage is in the number of lines which are distinguishable 

with respect to the algorithm.  Two line outages are indistinguishable with respect to 
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the algorithm if the ,calc lΔθ�  values calculated using (3.8) are scalar multiples of each 

other, i.e.,  

 
1 2, ,, calc l calc lα α∃ ∈ =Δθ Δθ� �\  (4.4) 

One way this can occur is if two lines are in parallel.  For the 37-bus case, an example 

where this occurs is with the two parallel lines connecting buses 21 (WOLEN69) and 

48 (BOB69).  The outage of either of these lines is modeled as an injection and 

withdrawal at bus 21 and 48, respectively, as discussed in Section 3.2.1 above.  As a 

result, the ,calc lΔθ�  values calculated for the outage of either line will be the same, 

regardless of the PMU deployment on the system.  For full PMU deployment, as 

considered in Section 4.1.1.1, this is the only situation in which two lines will satisfy 

(4.4).  This is due to the fact that the K matrix used in (3.8) is the N N× identity 

matrix when all buses are monitored. 

As the number of PMUs on the system is reduced, there are situations where 

nonparallel lines still satisfy (4.4).  In particular, this can occur when there is an 

unmonitored portion of the system connected to only one or two PMU-monitored 

buses.   

The first case considered is the where there are two boundary buses.  In Figure 

4.13, the “Buses not monitored with PMUs” region is eliminated and replaced by 

loads at the boundary buses equal to the flows out of the boundary bus.  The systems 

on the left and right of Figure 4.13 result in the same angles at the monitored buses.  
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Figure 4.13: Reducing the full system to only buses that are monitored with PMUs. 

To see why this is true, first the power flow equations for the left system are given: 
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where x ω y means there is a line connecting buses x and y, ,i jF  is the power flow 

from bus i to bus j, mθ  is the set of angles at the monitored buses, uθ  is the set of 

angles at the unmonitored buses, and ,inj iP  is the power injected into bus i (positive for 

generators and negative for loads).  Referring to Figure 4.13, the power flow 

equations at the monitored buses can be rearranged so that uθ  is eliminated and 

replaced by the boundary flow: 
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Because Equation (4.6) constitutes the power flow equations for the right-side system 

in Figure 4.13, the power flow solution mθ  is the same for both the left and right 

systems. 

If an event occurs on the unmonitored system which results in changes to the 

boundary flows, the external system can still be removed and replaced with injections 

using the new line flows between the two systems, as shown in Figure 4.14.  Barring 

any net changes in power injections within the unmonitored system (e.g., if the event 

is a line outage or a transfer between two buses within the unmonitored system), then 

the sum of the power entering the unmonitored system must stay constant [70].  As a 

result, the sum of the changes in flows and, consequently, the sum of the changes in 

equivalent injections must equal zero (i.e., 1 2F FΔ = −Δ ).   

 
Figure 4.14: The changes in the equivalent injections due to the event will sum to zero 
if there is no change in power injections within the unmonitored system. 

One consequence of this fact is that any two line outages within the unmonitored 

system will result in angle changes that are scalar multiples of one another (i.e., 

1 2, ,, calc l calc lα α∃ ∈ =Δθ Δθ� �\ , 1 2, unmonitoredl l ∈ system).  To see why this is the case, 
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first let 
11,lFΔ  be the change in flow on one of the boundary lines due to the outage of 

line 1l , and let 
21,lFΔ  be the change in flow on one of the boundary lines due to the 

outage of line 2l .  Referring to Figure 4.14, the outages can be represented by 

injections of { }1 11, 1,,l lF FΔ −Δ  and { }2 21, 1,,l lF FΔ −Δ  at the two boundary buses.  The 

estimated change in angles within the monitored system for the outage of line 1l  can 

then be expressed as 
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Similarly, the change in angles due to the outage of line 2l  can be expressed as: 
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Combining the results from (4.7) and (4.8), the condition in (4.4) holds: 
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 (4.9) 

An example of where this occurs for the study case with 18 PMUs is shown in Figure 

4.15.  Relating this diagram to the discussion in the previous paragraph, buses 14, 34, 

20, and 50 constitute the unmonitored system, buses 33 and 44 are the boundary 

buses, and lines 14-44 and 33-50 are the boundary lines.   
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Figure 4.15: Indistinguishable line outages using the 18 PMU configuration of the 37-
bus case. 

Table 4.1: Algorithm results for lines shown in Figure 4.15 using order 61 FIR 
filtering and angle threshold of 0.01 degrees 

From bus To bus NADOutaged RankOutaged SharedRank FlowError (MW)

14 34 0.0138 1 4 0.6641 

14 44 0.0636 1 4 0.8682 

20 34 0.0394 1 4 0.0002 

20 50 0.0349 1 4 0.6832 

33 50 0.1966 1 4 0.6573 

Using FIR filtering of order 61 and an angle threshold of 0.01 degrees, the 

algorithm is able to correctly identify each line when it goes out (i.e., RankOutaged = 

1 for all outages) and predict the pre-outage flow accurately.  Table 4.1 provides 

details on the algorithm’s performance for the outage of each of the lines in the 

unmonitored system with two additional performance metrics: 
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Ideally, SharedOutaged would be zero (indicating that the outaged line is 

distinguished from all other lines) and FlowError would also be zero (indicating that 

the algorithm predicted the pre-outage flow perfectly).  The FlowError values in 

Table 4.1 are very low, and the SharedOutaged confirms that the topology results in 

each line being indistinguishable from the other with respect to the algorithm.  One 

way to mitigate the impact of having several lines that are indistinguishable is to 

present the results by highlighting all lines which have RankOutaged equal to one on 

the one-line diagram.  This would still provide very useful information; namely, the 

subset of the lines on the system that contains the outage line. 

For the case where there is only one boundary bus between the monitored and 

unmonitored system (i.e., the unmonitored system is radially connected to the 

monitored system), the change in flow on the boundary lines will be zero if the net 

power injections within the unmonitored system do not change (e.g., for a line outage 

within the unmonitored system).  Therefore, the change in equivalent injection 

representing the unmonitored system is zero and the angles at the PMU-monitored 

buses do not change.  One instance of this topology for the 37-bus case is shown in 

Figure 4.16.  Because bus 37 is only connected to the rest of the system through one 

bus, unless there is a PMU measurement from bus 37 there will be no estimated 

change in the estimated system angles ( ,calc l =Δθ 0� ).  This is also shown in Figure 4.4, 

where the angle changes obtained by running the dc power flow solution after the 

outage of one of the lines connecting buses 18 and 37 are shown to be zero for all 

buses besides bus 37. 
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Figure 4.16: Instance of a radial system (single boundary bus) from the 37-bus case. 

The inability of the algorithm to detect radial lines without monitoring of the 

radial buses can be significant.  For instance, if one of the lines between buses 18 and 

37 goes out, it would be very helpful for the operator to know that there is only one 

line left to serve the load at bus 37.  However, to allow the algorithm to detect one of 

the lines going out, a PMU must be placed at bus 37.  This fact can help guide system 

planners in determining where to place new PMUs on the system, particularly if there 

is a known issue with reliability of one of the lines. 

4.1.2 TVA system line outage  

The second event tested is based on real measurements from the Tennessee 

Valley Authority (TVA) system after the outage of a 500-kV transmission line 

carrying approximately 1000 MW of power.  The buses with PMU angle signals are 

shown in Figure 4.17.   The unfiltered PMU signals obtained from these PMUs are 

shown in Figure 4.18, with the 8CORDOVA bus angle taken as the reference. 
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Figure 4.17: Location of PMU angle measurements on TVA system and location of 
the line outage. 

 
Figure 4.18: Unfiltered angle measurements from before and after the line outage. 

As with the 37-bus outages, an extensive sweep of filter type, filter length, and 

angle threshold was conducted to test the algorithm with this event.  Figure 4.19 

shows the RankOutaged values for FIR and median filtering using filter lengths in the 
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range of 3 to 401 and τ  values between 0.1 and 0.5 degrees.  Using a larger value of 

τ  results in an improved ranking for a given filter length due to the reduced 

interference of noise in determining the sample maxn , which is in turn used to 

determine observedΔθ .  The median filter also performs much poorer than FIR filtering 

for these signals, primarily due to the lack of noise attenuation (as shown in Figure 

4.20).   

 
Figure 4.19: RankOutaged values for detection of the TVA outage event using filter 
lengths in the range of 3 to 401 and angle thresholds in the range of 0.1 to 0.5 degrees. 

 
Figure 4.20: Differences in noise attenuation for FIR and median filtering for a filter 
length of 379. 
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The presence of noise in the TVA PMU signals is the key difference between 

these values and those simulated for the 37-bus case.  Because noise is present, the 

lower bound on τ  must be raised to avoid any misclassification of noise as an event.  

To show how a poor choice of τ  and filter length can cause false positives, the 

following metric is defined: 

 ( )
1 ,   < 

,
0 , otherwise

max line switchn n
EarlyEdge FilterLength τ

⎧
= ⎨
⎩

 (4.11) 

where line switchn  is the sample number corresponding to the outage of the Cumberland-

Davidson line.  Figure 4.21 shows the contour plots of EarlyEdge for FIR and median 

filtering, calculated with filter lengths between 3 and 401, and angle thresholds 

between 0.1 and 0.5 degrees.  The red areas indicate which combinations of filter 

length and angle threshold result in misclassification of noise as an event.  For any 

filter length, increasing the threshold results in lower misclassification; increasing the 

filter length can occasionally result in additional false positives due to the random 

noise present in the signals.  These results show that choosing a higher value of τ  

will tend to give better results, although the downside of using a large value of τ  is 

the potential increase in false negatives. 
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Figure 4.21: EarlyEdge contour plot for FIR (left) and median (right) filtering using 
filter lengths in the range of 3 to 401 and angle thresholds in the range of 0.1 to 0.5 
degrees. 

Because the outaged line is connected to the PMU at 8CUMBERL, it is 

interesting to see how the algorithm performs when the angle measurement at 

8CUMBERL is removed.  Figure 4.22 shows that the algorithm performs just as well 

for certain combinations of filter length and angle threshold, but for other settings 

there is significant performance degredation.  One cause of the poorer performance 

without the 8CUMBERL angle is that the oscillations are easier to attenuate for the 

other buses due to the lower amplitudes, and as a result it takes longer for the 

algorithm to settle on the maxn  value.  As maxn  gets larger, more of the postoutage drift 

in the steady state angle is incorporated into observedΔθ  and results in poorer algorithm 

performance.  The correct detection of the line outage for lower filter orders is 

promising, and indicates that the line outage can be detected with relatively low delay.  

These results also provide strong evidence that a basic median filter is likely to 

perform worse than a similarly sized FIR filter with noisy measurements due to 

poorer attenuation of noise. 
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Figure 4.22: RankOutaged values with and without the usage of 8CUMBERL PMU 
angle measurements. 

4.2 Generator Outage Examples 

The next set of examples looks at how well the algorithm can detect generator 

outages on the system.  The 37-bus case used to test single-line outage detection was 

also used to simulate PMU signals due to generator outages.  Each of the nine 

generator outages was simulated using PSS/E, and the data was then processed in the 

manner discussed at the beginning of Section 4.1.1. 
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4.2.1 All buses monitored 

As with the single-line outages, the first case examined is the case where there are 

PMUs located at all buses on the system.  The two sets of contours in Figures 4.23 

and 4.24 show how well the algorithm ranks the outaged generator based on the angle 

measurements using FIR filtering with filter orders between 3 and 301 and angle 

thresholds between 0.1 and 3.0 degrees.  The blank spaces in the contours show where 

the event was not detected (i.e., no angle exceeded the threshold). 

 
Figure 4.23: Contour plot of RankOutaged for generator outages at WEBER69, 
JO345, SLACK345, and LAUF69 using FIR filtering orders of 3 to 301 and angle 
thresholds of 0.1 to 3.0 degrees. 
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Figure 4.24: Contour plot of RankOutaged for generator outages at BOB69, 
ROGER69, BLT138, and BLT69 using FIR filtering orders of 3 to 301 and angle 
thresholds of 0.1 to 3.0 degrees. 

The only generator that is grossly misranked is WEBER69.  As with the single-

line outages that resulted in small angle changes, the small deviation in angles due to 

the outage of this generator make it very difficult to match the correct outage to the 

observed angle changes.  This is further evidence that selecting the correct value of τ  

is necessary to ensure the algorithm detects events properly. 
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The reason that the JO345 outages have RankOutaged equal to two for large 

portions of the contour is the inability of the algorithm to attenuate the oscillations 

with a filter cutoff frequency of 0.1 Hz.  Figure 4.25 shows that an FIR filter of order 

151 with a cutoff frequency of 0.1 Hz is incapable of properly damping the 

oscillations that are caused by this outage.  Lowering the cutoff frequency to 0.01 Hz 

can improve results, as shown in Figure 4.26, but only for filter orders above 400. 

 
Figure 4.25: Prevailing oscillations after the outage of a JO345 generator using FIR 
filtering with filter order 151 and cutoff frequency of 0.1 Hz. 

 
Figure 4.26: Effect of FIR low-pass cutoff frequency on the detection and rank of the 
JO345 generator outage. 
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The same tests were run using median filtering instead of FIR filtering, and the 

resulting contour plots are shown in Figures 4.27 and 4.28.  The performance of the 

algorithm is similar for both filtering methods, although median filtering is able to 

correctly rank the JO345 outage slightly more often than FIR filtering.  The other key 

difference is that the band in Figure 4.24 where RankOutaged is equal to two for the 

BLT138 outage is absent in the same contour of Figure 4.28. 

 
Figure 4.27: Contour plot of RankOutaged for generator outages at WEBER69, 
JO345, SLACK345, and LAUF69 using median filtering with window lengths of 3 to 
301 and angle thresholds of 0.1 to 3.0 degrees. 
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Figure 4.28: Contour plot of RankOutaged for generator outages at BOB69, 
ROGER69, BLT138, and BLT69 using median filtering with window lengths of 3 to 
301 and angle thresholds of 0.1 to 3.0 degrees. 

Because the median filter has only one parameter, the window length, there is no 

need to tune any additional parameters such as the cutoff frequency.  Figure 4.29 is 

presented to contrast the performance when median and FIR filtering are used.  

Comparing Figures 4.26 and 4.29, median filtering results in a RankOutaged value of 

one significantly more often than FIR filtering with 0.1 or 0.01 Hz cutoff frequencies.  
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Figure 4.29: A detailed look at ranking and detection of the JO345 generator outage 
using median filtering. 

4.2.2 Eighteen buses monitored 

The same placement of eighteen PMUs used in the single outage study was used 

to see how well the generator outage detection algorithm performs with sparser PMU 

deployment.  Figures 4.30 and 4.31 show the RankOutaged plots for the generator 

outages using this reduced PMU set with FIR filtering.   

 
Figure 4.30: Contour plots analogous to those in Figure 4.23 for FIR filtering with 18  
buses monitored instead of full bus monitoring. The WEBER69 outage is undetected 
and the LAUF69 outage has RankOutaged equal to one over the entire region, so 
these contours are not shown. 
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Figure 4.31: Contour plots analogous to those in Figure 4.24 for FIR filtering with 18 
buses monitored instead of full bus monitoring. 

As the number of monitored buses decreases, the set of angles which can signal 

the occurrence of an event is reduced.  This is why there are larger empty regions in 

the contours with only 18 buses monitored—some angle measurements needed to 

detect the line with higher values of τ  are no longer available.  On real systems, this 

knowledge of how a change in the set of monitored buses impacts the number of false 

negatives can help in deciding where to place PMUs on the system.  Finally, Figures 

4.32 and 4.33 show that median filtering results in a similar reduction in the ability to 

detect the outaged generators.   
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Figure 4.32: Contour plots analogous to those in Figure 4.27 for median filtering with 
18 buses monitored instead of full bus monitoring. The WEBER69 outage is 
undetected and the LAUF69 outage has RankOutaged equal to one over the entire 
region, so these contours are not shown. 

 
Figure 4.33: Contour plots analogous to those in Figure 4.28 for median filtering with 
18 buses monitored instead of full bus monitoring. 
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4.3 Double-Line Outage Examples 

4.3.1 All nonislanding double-line outages 

The same 37-bus system was used to test the performance of double-line outage 

detection.  A time domain simulation was run for each of the 1504 nonislanding 

double-line outages to see how well the algorithm detects double-line outages using 

the methods described in Section 3.4.   

4.3.1.1 All buses monitored 

The first PMU configuration considered is with PMUs monitoring every system 

bus.  The algorithm was run using filter lengths of 3, 9, 31, and 61 with FIR and 

median filtering using τ  values of 0.02, 1.83, 2.5, and 5.16 degrees.  These τ  values 

were chosen so that, for signals filtered with an FIR filter of order 31, 100%, 75%, 

50%, and 25% (respectively) of the outages were detected by at least one angle 

exceeding the threshold. 

Figure 4.34 shows in matrix form the RankOutaged value for each double-line 

outage on the system, with each row/column representing one of the 56 in-service 

lines.  The color of each square is used to indicate how the algorithm performed; red 

indicates a misranking (i.e., RankOutaged > 1) and green indicates correct ranking 

(i.e., RankOutaged = 1).  The blank squares represent single-line outages and double-

line outages that were not simulated due to islanding.  Of the 1504 total double-line 

outages considered, 1231 are ranked correctly and 273 are misranked; of these 273, 

255 involve the two lines between buses 18 and 37 and the three lines between buses 

15 and 54.  These lines correspond to the rows with high red density at the top of 

Figure 4.34.  Given the high R/X ratios of these lines, it is unsurprising that the 
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algorithm, which relies on the dc power flow equations, is unable to properly rank 

these outages.  Also, these were the same lines that caused problems for the single-

line outage detection (see Figure 4.2).  The only way to solve this problem would be 

to use the full ac power flow equations rather than the dc power flow equations when 

attempting to match outages with observed measurements; however, this would lead 

to significantly higher computational costs and require much more state information 

than is currently available in real power systems over a suitably wide area. 

 
Figure 4.34: Ranking of each line-line combination using FIR filter order 31, angle 
threshold of 0.02 degrees.  Green squares indicate double-line outages where 
RankOutaged = 1, red squares indicate RankOutaged > 1 (i.e., misclassification), and 
white squares indicate outages that were not tested. 

Fortunately, due to the small angle changes associated with the outages of the 

high R/X lines, many of the double outages involving lines 18-37 and 15-54 are 

undetected if τ  is set higher.  Figure 4.35 shows the RankOutaged matrix for the four 
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values of τ  used to test the algorithm, where black squares are used to indicate events 

that were not detected.  With the threshold set to 1.18 degrees, the number of 

misranked events involving the 18-37 and 15-54 lines drops from 255 to 100.  The 

undesirable side effect is that several outages which were ranked properly in the 

0.02τ = degree runs are no longer detected. 

 
Figure 4.35: Effect of angle threshold on event detection with 31-order FIR filtering; 
black squares represent outages that were undetected due to insufficient angle 
changes. 

Outside of the problems due to the 18-37 and 15-54 lines, there are still several 

instances where a double line outage is incorrectly identified.  Using the 0.02τ =



 

 116

degree results, there are 21 additional misranked outages.  Detailed information about 

these misranked outages is provided in Table 4.2, with the entries sorted by 

RankOutaged.  

Table 4.2: Misrankings that do not involve 18-37 or 15-54 using FIR filtering with a 
filter order of 31 and angle threshold of 0.02 degrees. 

From bus 
(line 1) 

To bus 
(line 1) 

Circuit 
ID  

(line 1) 
From bus 
(line 2) 

To Bus 
(line 2) 

Circuit 
ID 

(line 2) RankOutaged NADOutaged 
39 38 1 39 38 2 105 0.0165 
44 41 1 44 41 2 105 0.0137 
24 44 1 47 53 1 44 0.0151 
17 19 1 31 28 1 33 0.0549 
31 38 1 17 19 1 30 0.0270 
31 28 1 39 40 1 26 0.0205 
10 13 1 10 39 1 23 0.0193 
10 39 1 47 53 1 23 0.0212 
31 28 1 47 53 1 21 0.0173 
44 41 2 5 44 1 21 0.0129 
44 41 1 5 44 1 19 0.0208 
31 28 1 21 48 1 9 0.0062 
31 28 1 21 48 2 9 0.0353 
31 28 1 14 34 1 8 0.0162 
31 28 1 13 55 1 6 0.0197 
32 29 1 3 40 1 5 0.0571 
31 28 1 35 31 1 4 0.0201 
24 44 1 33 50 1 2 0.0209 
39 38 1 31 38 1 2 0.0336 
39 38 2 31 38 1 2 0.0200 
44 41 1 24 44 1 2 0.0227 

The two entries with the highest RankOutaged values in Table 4.2 correspond to 

the outage of parallel lines between buses 39 and 38 and between buses 44 and 41.  

To better understand what happens in the case of the outage of the two lines between 

buses 39 and 38, Figure 4.36 shows the observed angle changes due to the outage 

along with the best match in angle changes due to this event (i.e., 

* *
39 38,1 ,39 38,1 39 38,2 39 38,2calcP P− − − −+Δθ Δθ� �� �� �  as defined in (3.41)) and the best match in angle 
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changes due to the simultaneous outage of line 39-38, circuit 1, and line 39-47, circuit 

1 ( * *
39 38,1 ,39 38,1 39 47,1 39 47,1calcP P− − − −+Δθ Δθ� �� �� � ).   

 
Figure 4.36: A detailed look at the observed and event matching angle changes due to 
the outage of the parallel lines between buses 39 and 38.  

The predicted angle changes due to both the true outaged event and the top-

ranked event are very close, as shown in the figure.  In addition, the top-ranked event 

includes one of the parallel lines; in fact, in each of the 104 double-line outages which 

have lower NAD values than the true line outage, either line 39-38, circuit 1 or line 

39-38, circuit 2 is one of the two outages.  Because only one parameter is used to fit 
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parallel lines to observed angle changes (as discussed in Section 3.4.1), the extra 

degree of freedom when other lines are considered as possibilities allows the 

algorithm to more closely match the observed angles.  Restriction of the double-

outage event set to highly probable outages should help to mitigate this effect.  In 

addition, if the top 10 results were presented to an operator, the fact that one of the 

39-38 lines shows up in each entry would suggest that something has happened to one 

of those lines.   

The highest RankOutaged value for a nonparallel set of lines is the outage of 24-

44, circuit 1 and 47-53, circuit 1.  In this case, all of the double-line outages with NAD 

values less than the true event NAD value include line 24-44, circuit 1.  RankOutaged 

does not decrease as the filter order is increased to 61, indicating that the inability of 

the algorithm to recognize line 47-53, circuit 1 as the second outaged line is due to the 

mismatch between the dc power flow solution and the true system response to the 

outages.   

The double-line outages do not exhibit any of the problematic high amplitude, 

low-frequency oscillations which make filtering such a crucial component of 

generator outage detection.  Accordingly, the differences in results based on FIR and 

median filtering are minimal.  Table 4.3 contains a summary of the detection results 

for each combination of filter length and angle threshold mentioned at the beginning 

of this section.  The statistics based on FIR filtering are outside of parentheses, and 

the statistics based on median filtering are inside parentheses.  The similarity in the 

results for the two filtering methods, particularly as the filter length increases, is 
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further indication that failure in the dc power flow assumptions is the primary cause 

of incorrect ranking of events. 

Table 4.3: Summary of algorithm results for FIR (median) filtered angle 
measurements with complete bus monitoring. 

 

In summary, double-line outage detection is substantially more likely to generate 

misrankings due to the extra degree of freedom in choosing two, rather than one, pre-

outage flows to match expected angles to observed angles.  As a result, careful 

attention must be paid to how the double-outage event set is defined, not only to 

reduce the computational effort involved in searching through the events, but also to 

reduce the chances of misranking the true outage event.  Also, the choice of filtering 

method and filter length has only a slight impact on performance, as indicated in 

Table 4.3. 
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4.3.1.2 Eighteen buses monitored 

In addition to testing with PMUs at all buses, tests of the double-line detection 

algorithm were run with the 18 bus set defined in Section 4.1.1.2.  As with single-line 

outage detection, there are some special cases of double-line outages which deserve 

special consideration if some buses are unmonitored.   

The first case considered is where both outaged lines are in the unmonitored 

system and are connected to the remaining system through two boundary buses. Let 1l  

and 2l  denote the lines which are outaged.  Then, because the vectors used to 

minimize the difference in observed and expected angles are the same in the single- 

and double-line outage detection (see (3.8) and (3.36)), the change in angles on the 

monitored system must be colinear (i.e., 
1 2, ,, calc l calc lα α∃ =Δθ Δθ� � ).  As a result, the 

minimization of the difference between the observed and expected angles, (3.37), 

collapses to a one-dimensional minimization, 
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which has the following solution: 
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An additional equation would allow for determination of ,1lP��  and ,2lP�� , but the 

monitored system only “sees” the composite effect of the two outages, and it is 
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therefore not possible to determine ,1lP��  and ,2lP��  uniquely.  On the other hand, the 

outage event can still be ranked by comparing the expected and observed angle 

changes. 

Another interesting case is when one of the outaged lines connects an 

unmonitored portion of the system to a single bus within the monitored system.  As 

discussed in Section 4.1.1.2, the outage of a radial line connected to one boundary bus 

results in no angle changes on the monitored system (i.e., ,radial linecalc =Δθ 0� ).  

Referring to the boundary line as 2l , the following formulation of the angle matching 

minimization is obtained: 
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Because there are no angle changes associated with the boundary line 2l , the 

minimization reduces to a single-line outage detection problem for the other line.  If 

both lines are connected through only one bus to the monitored system, then both 

calcΔθ� vectors are zero and there is no way to identify the outage with the algorithm. 

Finally, there are instances in which two or more double-line outages are 

indistinguishable from one another even though the individual calcΔθ�  of each line are 

not collinear.  Just as in the single-line outage case indistinguishable lines resulted 

from there being only two buses connecting the monitored and unmonitored system, 

indistinguishable double-line outages occur when there are only three buses 

connecting the monitored and unmonitored system (see Figure 4.37). 
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Figure 4.37: Unmonitored system connected to monitored system through three 
boundary buses. 

  Two double-line outages are indistinguishable if the following condition is true: 

 
1, 1 2, 1 1, 2 2, 2, , , ,

, ; , ;

EV EV EV EVcalc l calc l calc l calc l

a b c d
a b c d

∀ ∈ ∃ ∈
Δ + Δ = Δ + Δθ θ θ θ

\ \
 (4.15) 

In (4.15), one double-line outage in the unmonitored system is referred to as EV1, and 

the other double-line outage is referred to as EV2.  The lines constituting the outage 

EV1 are 1, 1EVl  and 2, 1EVl ; similarly, 1, 2EVl  and 2, 2EVl  refer to the lines in the double-

outage event EV2.  If the relation in (4.15) is true, then when matching either event 

against the observed angle changes the same minimum difference will be obtained. 

To determine the cases under which (4.15) holds, first let 1
1

EVFΔ  be the change in 

flow on boundary line 1 due to EV1, with similar notation to designate the other 

boundary flows ( 1 1 2 2
2 3 1 2, , ,EV EV EV EVF F F FΔ Δ Δ Δ  and 2

3
EVFΔ ) depicted in Figure 4.37.  If 

no islanding results from the outages in the unmonitored system, then the bus power 
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injections in the unmonitored system will stay the same and the boundary flows must 

sum to zero for each outage: 

 1 2 3 0F F FΔ +Δ +Δ =  (4.16) 

As was done in 4.1.1.2, it can be shown that the ,calc lΔθ�  vector for the outage of any 

single line l in the unmonitored system can be determined by representing the changes 

in boundary flows as changes in injections at the boundary buses: 
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Combining (4.16) and (4.17), ,calc lΔθ�  can be expressed in terms of 1
lFΔ  and 2

lFΔ  by 

eliminating 3
lFΔ : 
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Equation (4.18) can then be simplified further to give ,calc lΔθ�  as the sum of two 

scalar-vector products: 
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Combining (4.19) with (4.15), the condition under which two double-line outages are 

indistinguishable can be restated in terms of the 1Δθ  and 2Δθ  vectors from (4.19): 
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One condition under which (4.20) is true is if the coefficients on the 1Δθ  and 2Δθ  

vectors match on both sides of the equation: 
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The inverse matrix in (4.21) exists if and only if the determinant is nonzero, i.e.,  
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 (4.22) 

The condition in (4.22) will be true if the line outages are distinguishable with respect 



 

 125

to the single-line outage detection algorithm (i.e., the angle change vectors associated 

with each line are not scalar multiples of one another).  If (4.22) is false, then the 

double outages EV1 and EV2 may still be indistinguishable, but for other reasons 

(e.g., if there are three lines in parallel).  If (4.22) is true, then (4.21) gives the unique 

values of c and d for each value of a and b that are needed to satisfy the criteria for 

indistinguishable double outages, (4.15).  Therefore, except for those double-outage 

events where condition (4.22) is violated, the double-line outages in the unmonitored 

system connected by three buses to the monitored system will not be distinguishable. 

Figure 4.38 shows a portion of the 37-bus system that, when monitored at the 18 

buses defined above, has 11 indistinguishable double-line outages.  The set of double-

line outages that are indistinguishable is provided in Table 4.4.  There are six lines 

within the unmonitored system, which are, using the notation (from bus number, to 

bus number, circuit ID), defined as: (35, 31, 1), (35, 56, 1), (56, 29, 1), (28, 29, 1), 

(28, 29, 2), and (31 ,28 ,1).  The indistinguishable double-outage set does not include 

four of the line combinations: {(29, 28, 1), (29, 28, 2)}, {(29, 28, 1), (31, 28, 1)}, 

{(29, 28, 2), (31, 28, 1)}, and {(35, 56, 1), (56,29,1)}.  What distinguishes these 

double-outage sets from the rest of the double-outage sets is that these sets involve 

two lines which have collinear ,calc lΔθ�  vectors.  As a result, the condition in (4.22) is 

not true and the condition for two double-line outages to be indistinguishable is not 

satisfied. 
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Figure 4.38: Portion of the 37-bus system that, when monitored with the 18 PMU set, 
has 11 indistinguishable double-line outages. 

Table 4.4: Indistinguishable double-line outages for the portion of the 37 bus system 
illustrated in Figure 4.38 

Line 1 
From bus 

Line 1
To bus

Line 1 
Circuit ID

Line 2 
From bus

Line 2
To bus

Line 2 
Circuit ID 

35 31 1 35 56 1 
28 29 1 35 31 1 
28 29 1 35 36 1 
28 29 1 56 29 1 
28 29 2 35 31 1 
28 29 2 35 36 1 
28 29 2 56 29 1 
31 28 1 35 31 1 
31 28 1 35 36 1 
31 28 1 56 29 1 
35 31 1 56 29 1 

Due to the complicating factors associated with having unmonitored buses, the 

algorithm uses several steps to ensure each possible double outage is properly handled 

when attempting to match the event with the observed angle changes.  Figure 4.39 

shows the process that is undertaken for each event that is detected.  The set of 

diamonds on the right-hand side of the figure constitute a cascaded classification 

system to determine how the double-line outage event should be modeled and fit to 

the observed angle changes. 
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Figure 4.39: Program flow for the double-line outage detection implementation, 
including cascading event classification 

To test the performance of the algorithm with the lower number of PMUs, filter 

lengths of 3, 9, 31, and 61 were used along with angle thresholds of 0.006, 0.71, 1.04, 

and 2.31 degrees.  These angle thresholds were chosen based on detecting 100%, 

75%, 50%, and 25% of the events using FIR filtering of length 31. 

The results based on FIR filtering are very similar to those results obtained with 

full PMU placement.  Figure 4.40 provides the RankOutaged matrix for FIR filtering 

of order 31 using the reduced PMU set.  Comparing this with Figure 4.35, the 
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performance of the algorithm with the reduced PMU set is very similar to using the 

full PMU set.  Also, the negative impact of the lines between buses 18 and 37 and the 

lines between buses 15 and 54 is clearly not mitigated by reducing the number of 

PMUs.  Figure 4.41 shows that the RankOutaged values also change very little when 

median filtering is used on the reduced PMU measurements. 

 
Figure 4.40: FIR filtered results, using a filter order of 31 and the set of 18 PMUs 
defined in Section 4.1.1.2. 
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Figure 4.41: Median filtered results, using a window length of 31 and the set of 18 
PMUs defined in Section 4.1.1.2. 

As with the single-line outage tests, the most significant difference between 

having a full PMU deployment and 18 PMUs is the number of events which are 

indistinguishable.  To quantify this effect, the SharedOutaged quantity defined in 

(4.10) is examined for the two different PMU deployments with 31-order FIR filtering 

and τ  set to the minimum needed to detect all events using the full PMU deployment.  

Figure 4.42 shows that the ability of the algorithm to differentiate between the true 

outage event and other events on the system is significantly impaired by a decrease in 

PMU deployment.  From an operational standpoint, higher SharedOutaged values 
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require listing 1SharedOutaged +  events rather than just listing one event, but this 

can still be useful information for operators if the results are visualized.   

 
Figure 4.42: Effect of reducing the PMU set on SharedOutaged with 31-order FIR 
filtering and τ  set to the minimum value needed to detect the maximum number of 
events. 

The black squares in Figure 4.42 designate double-line outages which were 

detected but not ranked.  This can only occur when calcΔθ�  is equal to 0  for one or 

both of the lines outaged.  If only one of the lines has calc =Δθ 0� , then (4.14) is 

applied, and if the necessary pre-outage flow on the other line is greater than 1.5 times 

the line rating, then the event is removed from consideration (as discussed at the end 

of Section 3.4.4) and not ranked.  If both calcΔθ�  vectors are 0 , then it is not possible 

to perform the minimization in (3.37) and the event is not ranked.   

4.3.2 All nonislanding double-line outages that share at least one 
terminal 

The results presented in Section 4.3.1 are based on the simultaneous, unforced 

outage of each pairwise combination of lines on the system.  In real power systems, 



 

 131

two lines are unlikely to go out simultaneously unless they are close to one another, 

which is the basis for the filtering mechanism described in Section 3.2.4.  To ascertain 

the performance of the algorithm for more realistic double-line outage events, 

additional tests were run using only those outages where at least one terminal bus is 

shared between the two lines.  The set of events E  tested to match with the observed 

angle changes was similarly restricted.  This restriction reduces the number of 

possible double line outage events from 1504 to 115. 

The algorithm was first tested with full PMU deployment using the same filter 

lengths and angle thresholds from Section 4.3.1.1.  A summary of the algorithm 

performance is provided in Table 4.5.  Comparing these results with those from Table 

4.3, there are significantly fewer misranked events.  Figure 4.43 shows the 

RankOutaged values for the full double-outage event set (left side) and the set of 

double outages where a terminal bus is shared (right side) using the same row/column 

ordering and color scheme as the figures in Section 4.3.1. The misranked double-line 

outages which share a terminal bus are still concentrated in the first few rows—11 of 

the 16 misranked outages include lines between buses 18-37 and 15-54.  As in the full 

event case, there are still problems with parallel line outages, although the 

RankOutaged value is reduced due to the smaller size of the event detection set E . 



 

 132

Table 4.5: Summary of algorithm results for FIR (median) filtered angle 
measurements with complete bus monitoring considering only double line outages 

where a terminal bus is shared 

 

 
Figure 4.43: RankOutaged results for FIR filtering with angle threshold of 0.02 
degrees, for the full double-outage set (left side) and the double outages which share a 
terminal bus (right side).  Red squares indicate where RankOutaged is greater than 
one and green squares indicate where RankOutaged equals 1.  White squares indicate 
events which were not considered. 

If the PMU coverage is reduced to 18 PMUs, the ranking of the events is not 

significantly impacted.  In addition, reducing the event set to only those double-line 
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outages that share a terminal bus reduces the increase in SharedOutaged.  Figure 4.44 

shows the change in SharedOutaged for each of the double-line outages as the PMU 

set is reduced to 18 PMUs.  Although there is a small increase in SharedOutaged 

values as the number of PMUs is reduced, the maximum SharedOutaged value is 4.  

This is much lower than the maximum SharedOutaged value of 14 which is obtained 

if all events are considered and 18 PMUs are used (shown in Figure 4.42). 

 
Figure 4.44: Effect of reducing the PMU set on SharedOutaged with 31-order FIR 
and τ  set to the minimum value needed to detect all events, with the event set 
restricted to those lines that share a terminal bus. 
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5 PHASOR MEASUREMENT UNIT PLACEMENT 
FOR EVENT DETECTION 

5.1 Overview 

If the goal of deploying additional PMUs is to improve event detection, then there 

are some key characteristics of a given set which must be considered: 

• Detection of events of interest 

• Proper ranking of detected events 

• Differentiation between events 

Optimized placement of PMUs requires two components: an objective function to 

maximize (or minimize) and a method of searching the space of PMU sets so that the 

objective function is maximized (or minimized).  The first section below deals with 

defining an objective function to meet certain criteria, while the second section 

provides details on simulated annealing (SA), the method used to search the set space.  

Finally, the third section presents some results showing how exhaustive search and 

SA perform in placing PMUs based on the objective functions.   

5.2 Objective Function Definition 

To evaluate each PMU placement set, an objective function must be defined 

which provides a numerical fitness value for each PMU set.  For the purposes of PMU 

placement, it is assumed that filtering is applied to the raw measurements such that 

the observed angle change vector is equal to the difference in steady state angles (i.e., 

all oscillations around the new steady state angles are completely attenuated).  To 

determine the observed angle change vector corresponding to each event, the 



 

 135

postevent angle after 20 s was subtracted from the original angle, with the 

measurements filtered using a 61-order FIR filter.  On the other hand, the angle 

threshold, which determines which events are detected by the algorithm, is allowed to 

vary so that the optimization function is maximized.  The objective functions below 

include τ  in their definition, and the impact of τ  on the objective function is 

discussed in each individual section. 

5.2.1 Objective 1: Maximize the number of correctly ranked events 

The simplest objective function is to evaluate the PMU set by maximizing the 

number of events that are detected and ranked correctly.  An optimization problem 

which would meet this objective is 
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 (5.1) 

where E  is the set of events used to evaluate the PMU placement.  Note that the set 

*PMUSet  can have several members, corresponding to several PMU placements 

which result in the same maximum value of the objective function.  In (5.1), the 

dependence of RankOutaged on the angle threshold is made explicit in determining 

RankOutaged and 1RankX .  Notice that if an event is undetected, it does not impact the 

objective function; as a result, this particular objective function does not penalize a 

particular PMU placement for resulting in misranked events.  Therefore, the inner 

maximization over τ  should always choose τ  equal to the minimum angle change 

over all angles for each event, since choosing a different τ  would reduce the number 
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of possible events where RankOutaged = 1.  The primary shortcomings of this 

objective function are the lack of a penalty for misranking of events and the lack of a 

penalty for having events which share the same rank. 

5.2.2 Objective 2: Maximize the number of correctly ranked events 
with no misranked events 

Building upon the first objective function, it is possible to define an objective 

function which penalizes a PMU placement if it results in misranked events.  One 

such optimization definition is 
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 (5.2) 

Once again, the dependence of RankOutaged on the angle threshold is made explicit 

in determining RankOutaged and NoMisrankX .  Unlike with the previous objective 

function, the optimal value of τ  for the inner maximization is not necessarily the 

minimum angle change.  Consider the case where there is an event (such as the outage 

of one of the 18-27 lines) that is misranked no matter how many angle measurements 

are taken due to failure of the dc power flow assumptions.  In this case, the only way 

to improve the objective function would be to stop detecting this event, which will be 

the case if τ  is set sufficiently high.  Therefore, the inner maximization must be 

explicitly calculated for this optimization problem.  Fortunately, this does not pose 

much of a computation burden due to the finite number of τ  values which impact the 
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results; in the worst case, the number of evaluations needed to exhaustively solve the 

inner maximization is equal to the number of events. 

This objective function is a significant improvement over the first, in that it 

explicitly accounts for the problem of misranking by removing from consideration 

any combination of PMU placement and τ  that would result in a misranked event.  

The number of events that share the same rank is still not accounted for, but this 

optimization provides a much better match with the objectives mentioned at the 

beginning of the chapter. 

5.2.3 Objective 3: Maximize the number of correctly ranked events 
with no misranked events and no events with the same rank 

Taking the optimization problem from the previous section one step further, it is 

also possible to remove any PMU set and threshold combination if it results in events 

that share the same rank.  The optimization to be solved in this case is: 
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 (5.3) 

This is a much more restrictive objective function, in that only events which are 

ranked one and have no other events sharing that rank count towards the objective 

function value for a particular PMU placement.  While this last objective function 
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meets each of the objectives stated in Section 5.1, not all instances of SharedOutaged 

greater than zero are problematic if visualization of the event detection is used to 

present the results (e.g., in the case of parallel lines).  As a result, this objective 

function may result in PMU placements which are poorer than other placements from 

a practical sense. 

5.3 Searching Methods 

5.3.1 Exhaustive search 

One method of determining the optimal placement of PMUs with respect to these 

objective functions is to perform an exhaustive search.  This can become 

computationally intractable, depending on how PMUSets is constructed.  If, for 

instance, PMUSets consists of all possible PMU combinations on an N-bus system, 

then the number of possible PMU configurations to evaluate is: 
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Even if the number of PMUs to be placed is fixed, the size of PMUSets is likely to 

make exhaustive search computationally intractable.  For instance, placing 4 PMUs 

on a 37-bus system requires the search of a space that is of size 66 045.  If each 

evaluation of the objective function is carried out in 0.5 s, then it would still take 9 h 

to process the whole set of possible PMU combinations. In the results presented 

below, exhaustive search was only used for the placement of up to 6 PMUs due to the 

amount of time needed to perform exhaustive search.  The good thing about 

exhaustive search is that it is guaranteed to find the global optimal value of the 
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objective function and all PMU placements that attain this optimal value, unlike the 

simulated annealing method described in the next section. 

5.3.2 Simulated annealing 

An alternative method which has been used to perform large-scale combinatorial 

optimization in other PMU placement applications [18, 20] is simulated annealing 

(SA) [73].  This method is based on the properties of material annealing (heating and 

then gradual cooling), where atoms within a material will tend to reach a globally 

minimum energy state if the material is cooled slowly enough.  Leveraging this idea 

to perform optimization, the following algorithm is defined: 

1. Initialize the algorithm temperature and configuration: 
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 (5.5) 

2. Until exit condition is reached: 

a. While IterationsAtTemperature < NumIterationsAtTemperature and 

exit condition has not been met 

i. Evaluate a new PMU placement: 
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ii. Check for exit condition 

 
if 

exit algorithm
StallIterations StallIterationsMax=

 (5.7) 

iii. If exit condition has not been met, increment 

IterationsAtTemperature: 

 1IterationsAtTemperature IterationsAtTemperature← +  (5.8) 

b. Update the temperature and reset IterationsAtTemperature 

 
0.99

0
T T
IterationsAtTemperature
← ×

←
 (5.9) 

The algorithm parameters which have not been previously defined are as follows: 

• T, initialT : T is the current “temperature” in the optimization.  High 

temperatures correspond to hot materials in which the atoms or molecules can 

move around freely, whereas low temperatures correspond to cold materials 

where movement is restricted to those movements which will directly lower 

the energy of the system.  The key feature of simulated annealing is that it 

allows for suboptimal changes in the current PMUSet so that the algorithm 
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does not get stuck in local maxima, as would be the case using a pure hill-

climbing algorithm such as steepest ascent.  The mathematical model of this 

behavior is represented by the conditional acceptance of poorer PMU 

placements in (5.6) based on the Boltzmann distribution.  initialT , the initial 

value of the temperature, is chosen so that essentially any change in the PMU 

placement is accepted at the start of the algorithm.  For the results presented 

below, this was set to 10 times the minimum of P, the number of PMUs in the 

placement set, and N – P, the number of buses without PMUs. 

• IterationsAtTemperature, NumIterationsAtTemperature: The 

IterationsAtTemperature counter keeps track of how many PMUSet’s are 

tested at the current temperature.  After NumIterationsAtTemperature 

PMUSet’s have been tested at a given temperature, the temperature is 

adjusted.  Several iterations need to be run at each temperature to allow the 

current state of the system to settle into the probability distribution associated 

with a given temperature [73].  For the results presented below, 

NumIterationsAtTemperature was set to the minimum of P, the number of 

PMUs in the placement set, and N – P, the number of buses without PMUs. 

• InitialPMUSet : An initial guess at what the optimal PMU placement should be; 

for a finite number of PMUs, the only restriction is that the reference bus is 

within this set and that the cardinality of the set is the number of PMUs to be 

placed.  For the results presented below, this was set to include PMUs at the 
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referenced bus and P-1 other buses chosen at random, where P is the number 

of PMUs to be placed. 

• ObjFunc: One of the three objective functions defined in Section 5.2. 

• StallIterations: Keeps track of the number of iterations since the last increase 

in the objective function due to a new optimal PMU placement set. 

• StallIterationsMax: The maximum number of iterations allowed after the last 

increase in the objective function before the algorithm exits.  In generating the 

results presented below, this was set to 1000 times the minimum of P, the 

number of PMUs in the placement set, and N – P, the number of buses without 

PMUs.  The main purpose of setting this to a high number is to ensure the 

local maximum is attained as the temperature reaches low values. 

• ( )Neighbor PMUSet : A function which takes a PMU placement set and 

returns a new PMU placement set which is a variation on the previous set.  For 

the results presented below, this function randomly selects a PMU from a 

nonreference bus and moves it to an adjacent bus without a PMU, where two 

buses are adjacent if there is a line connecting the buses. 

• maxPMUSet , maxf : The best PMU placement set found at any point during the 

run of the algorithm, and the optimal objective function value associated with 

the best PMU placement set. 

• [ ]( )0,1Uniform : A sample from the uniform distribution with a lower bound 

of zero and upper bound of one. 
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Using these parameters, SA produces a PMU placement set maxPMUSet  which 

would ideally be equal to the true optimal *PMUSet .  There is no guarantee that the 

SA algorithm will reach the true optimal, but as shown in the results below the 

algorithm does a good job of finding an objective function maximum that is close to 

the true optimal while drastically reducing the amount of computation needed relative 

to exhaustive search. 

5.4 Results for Optimal PMU Placement to Detect Single-
Line Outages 

As mentioned in the beginning of Section 5.2, the impact of filtering can be 

neglected in the placement problem by first determining observedθΔ  for each outage 

using a high order filter of the simulated angles and calculating the changes in angles 

several seconds after the outage occurs.  Using these observedθΔ  values, RankOutaged, 

AboveThreshold, and SharedOutages are determined for a given PMU placement set 

PMUSet and angle threshold τ .  These quantities were evaluated using the methods 

described in Section 3.2 and then used to evaluate the objective functions defined in 

Section 5.2.  Exhaustive search was used for the placement of three and six PMUs, 

and SA was used for placement of 3, 6, 9, 18, and 27 PMUs.  SA was run three times 

for each PMU placement problem, and the best result is reported below.  The 

computation time given in the results tables for SA includes all three runs of SA. 
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5.4.1 Three PMUs placed by exhaustive search and simulated 
annealing 

The first set of results looks at the optimal placement of three PMUs on the 

system with each objective function using both exhaustive search and simulated 

annealing.  The total number of possible PMU placements for three PMUs is 630.  

Table 5.1: Placement of three PMUs using exhaustive search and SA 

Objective 
function 

Search 
method 

Highest 
objective 

function value

Corresponding 
PMUSet(s) 

Time taken to 
perform 

optimization 
(seconds) 

1RankObjFunc  Exhaustive 40 {18, 31, 37} 1.31 

1RankObjFunc  SA 40 {18, 31, 37} 42.71 

NoMisrankObjFunc  Exhaustive 15 {1, 9, 31} 1.29 

NoMisrankObjFunc  SA 14 {12, 31, 32} 42.03 

NoSharedObjFunc  Exhaustive 3 

{1, 13, 31} 
{1, 28, 31} 
{1, 38, 31} 
{5, 13, 31} 
{13, 18, 31} 
{13, 21, 31} 
{13, 28, 31} 
{13, 37, 31} 
{13, 38, 31} 
{13, 48, 31} 
{17, 38, 31} 
{19, 38, 31} 
{21, 38, 31} 
{28, 30, 31} 
{28, 33, 31} 
{38, 48, 31} 

1.58 

NoSharedObjFunc  SA 3 
{13, 31, 37} 
{13, 31, 48} 
{17, 31, 38} 

43.31 

As seen in Table 5.1, for the 1RankObjFunc  objective function both SA and 

exhaustive search determine the global optimal of {18, 31, 37} which results in 40 

outages being ranked correctly.  The time taken to perform the optimization is much 

lower for exhaustive search in this case due to the small number of possible 

configurations for a 37-bus case.  The results for the other two objective functions are 
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also shown in Table 5.1; the SA results are slightly suboptimal for one of the 

objective functions, NoMisrankObjFunc , and the time to perform the optimization is 

significantly higher, indicating that for very small PMU deployments on this system 

simulated annealing is not as efficient as exhaustive search.  Also noteworthy is the 

large number of PMU placements that optimize the NoSharedObjFunc  objective 

function.  Because so many of the PMU sets optimize this objective, SA can easily 

find optimal PMU placements, and this is reflected in the fact that all three runs of SA 

result in optimal PMU placements.  The NoSharedObjFunc  results also illustrate a key 

shortcoming of SA—namely, that it does not provide an exhaustive list of optimizing 

placement sets, whereas exhaustive search does. 

5.4.2 Six PMUs placed by exhaustive search and simulated annealing 

Next, the placement of six PMUs on the system is examined using both 

exhaustive search and simulated annealing.  Placing six PMUs pushes the bounds of 

how many PMUs can be placed in a reasonable amount of time with exhaustive 

search; doing the same search for seven PMUs would take approximately four times 

longer, resulting in search times on the order of hours rather than minutes.  Going 

beyond seven PMUs would require days of computation if exhaustive search were 

used. 

The results shown in Table 5.2 illustrate the difference in computation time for 

SA relative to exhaustive search—there is a roughly fivefold decrease in computation 

time.  This shows that SA scales much better with the number of PMUs to be placed 

than exhaustive search does.  In addition, SA has many more parameters which can be 
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tweaked, particularly the exit condition StallIterationsMax, which can be modified to 

reduce this computational time. 

Table 5.2: Placement of six PMUs using exhaustive search and SA 

Objective 
function 

Search 
method 

Highest 
objective 
function 

value 

Corresponding 
PMUSet(s) 

Time taken to 
perform 

optimization 
(seconds) 

1RankObjFunc  Exhaustive 49 {1,3,5,21,55,31} 589.95 

1RankObjFunc  SA 46 {3,5,10,21,31,54} 
{13,21,24,31,34,37} 98.04 

NoMisrankObjFunc  Exhaustive 31 {10,15,21,48,56,31} 620.55 

NoMisrankObjFunc  SA 21 {12,24,28,30,31,40} 90.03 

NoSharedObjFunc  Exhaustive 9 
{1,21,24,28,38,31} 
{1,24,28,38,48,31} 
{1,24,28,38,53,31} 

710.72 

NoSharedObjFunc  SA 8 {19,28,30,31,38,48} 118.15 

Table 5.2 also showcases the other main issue in using an approximate optimizer 

such as simulated annealing—the SA result is suboptimal for all three objective 

functions, and is significantly suboptimal for the NoMisrankObjFunc  objective function. 

One possible reason for this behavior is that the objective function has infinitely steep 

derivatives in the presence of misranked events.  This can prevent the SA algorithm 

from transitioning between configurations, particularly as the temperature gets low 

and the algorithm stops allowing suboptimal transitions.  One solution would be to 

reformulate the objective function so that the penalty for having misranked events is 

less than infinity, although the choice of penalty would have to be tailored to each 

system and event set in order to continue avoiding misranking.  Another option would 

be to try additional combinatorial optimization methods (e.g., genetic algorithms [74], 

particle swarm [75], or a hybrid of several methods as in [76]).  Ultimately, there is no 
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way to avoid the fact that with an extremely large search space tradeoffs must be 

made between computational effort and optimality. 

5.4.3 Higher numbers of PMUs placed by simulated annealing 

The final set of results illustrate the performance of SA for the placement of 

PMUs in which exhaustive search is computationally infeasible.  SA was run once for 

each combination of objective function and number of PMUs P.  The results of these 

runs are given in Table 5.3.  The steady increase in optimal values of the three 

objective functions indicates that SA is finding better PMU placements as the number 

of PMUs increases.  This fits well with the results from Section 4.1.1.2, where the 

reduction in PMUs from 37 to 18 led to slightly poorer rankings and more events with 

nonzero SharedOutaged values.  Moreover, these results show that if 27 PMUs are 

placed on this system, there exists a PMU placement and angle threshold such that 51 

of the 56 events are correctly detected without any misrankings.  This confirms the 

usefulness of the single-outage detection algorithm for reduced PMU placements, 

particularly if misranking is to be minimized.  Also, although these results are based 

on the dynamic simulations with the initial conditions given in 0, running SA with 

different system configurations (e.g., summer peak, winter peak, midday, midnight, 

etc.) would be feasible due to the small amount of time needed to perform the search.  

On the other hand, testing a wide variety of system configurations would be 

prohibitively expensive from a computation standpoint if a more exhaustive search 

approach is used. 
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Table 5.3: Placement of 9, 18, and 27 PMUs by simulated annealing 

Objective 
function 

Number of 
PMUs (P) 

Highest 
objective 
function 

value 

Time taken to 
perform 

optimization 
(seconds) 

1RankObjFunc  9 47 65.33 

NoMisrankObjFunc  9 26 56.41 

NoSharedObjFunc  9 11 55.74 

1RankObjFunc  18 52 148.76 

NoMisrankObjFunc  18 38 121.96 

NoSharedObjFunc  18 24 172.83 

1RankObjFunc  27 54 76.52 

NoMisrankObjFunc  27 51 62.87 

NoSharedObjFunc  27 37 84.99 
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6 GPU-BASED VISUALIZATION OF PMU DATA 

6.1 Overview 

The high data rate of phasor measurement units requires sufficiently fast 

rendering if real-time visualization is to be achieved.  Graphical processing units 

(GPUs) have shown remarkable progress in the past decade, providing unprecedented 

computational power and programmability for advanced graphics applications.  The 

use of GPUs to render PMU data is a natural fit between the high data rate of PMUs 

and the high rendering rate of GPU-based visualization algorithms.  Accordingly, two 

applications have been developed and are presented in the remainder of this chapter.  

The first section considers how one of the more common visualization techniques, bus 

data contouring, can be significantly accelerated by using GPU rendering.  The 

second section discusses some additional processing of the data that can make the 

data visualization more content-rich.  Analysis of these techniques shows how 

combining cutting-edge visualization techniques with cutting-edge measurement 

techniques can provide significant improvements in situational awareness. 

6.2 Implementation of Contouring on the GPU 

6.2.1 Introduction to contouring on the GPU 

Based on the recommendations of the August 2003 blackout report [1], a heavy 

emphasis has been placed on improving situational awareness in control centers 

around the world.  One visualization technique which has been used to increase 

situational awareness has been contouring [40].  This technique, also known as 

scattered data interpolation (see [77] for a survey of the state-of-the-art), aims to 
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provide a weather-map-like visualization of the power grid, showing various bus- or 

substation-based data throughout an area of interest.  This type of visualization has 

been used in many different fields, e.g., meteorology [78] and medical imagery [79], 

and its usefulness has been demonstrated for power system applications through 

human factors testing [42]. 

One key similarity between the methods used to generate power system contours 

in the past has been a reliance on the CPU to do the necessary contour calculations.  

CPUs, which are optimized for general purpose computing, are not well-suited for the 

parallel calculations that are inherent in some contouring algorithms.  Several 

incremental improvements have been made, but CPU-based contouring is 

fundamentally constrained by the serial nature of CPU program execution.  On the 

other hand, graphics processing units (GPUs), which are present in most modern 

computer systems, are ideally suited to the computations needed to generate contours 

because of the parallel nature of GPU program execution.  Furthermore, some work 

has already been done in demonstrating the effectiveness of using GPUs to perform 

real-time interpolation of three- and four-dimensional data [48].  This work suggests 

that there is a potentially large benefit to using GPUs in two-dimensional power 

system contours. 

In order to investigate the possible performance gains of using GPU- rather than 

CPU-based contouring for power system visualizations, a prototype GPU-based 

contouring algorithm has been developed.  The remainder of this chapter discusses 

this work, and is divided into several sections.  Section 6.2.2 provides a brief 
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overview of the contouring problem.  Section 6.2.3 discusses some of the fundamental 

aspects of GPU programming, while Section 6.2.4 provides the algorithm and 

implementation details.  Section 6.2.5 provides some performance results for 

contouring a real power system area as parameters such as influence radius and 

contour resolution are varied.  Section 6.2.6 discusses some of the key advantages and 

disadvantages of moving contouring to the GPU, and Section 6.3 details several 

benefits and potential applications of GPU-based contouring. 

6.2.2 Contouring background 

Formally, the purpose of contouring (or scattered data interpolation) in the power 

system context is to find a function ( ),F x y such that for each bus k , located at 

position ( ),k kx y , 

 ( ),k k kF x y f=  (6.1) 

where kf  is the value to be contoured (e.g., voltage), known to be a specific value at 

each bus k .  This value is typically obtained from a state estimator or directly from a 

measurement device such as a PMU.  There are an infinite number of possible 

functions that can satisfy this constraint, so additional restrictions are useful in 

reducing the set of possible functions.  One additional constraint imposed on F  in 

this application is that F  must be “smooth,” i.e., continuous and once differentiable 

[80]. 

While there are many different methods which can be used to determine the 

contouring function F  (see [77]), this work focuses on inverse distance weighted 

methods due to their intuitive nature and ease of parallelization.  The intuition behind 
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inverse distance weighted methods is that the function value at any point should be 

the weighted average of all points with known values.  In this method of contouring, 

the function F  is defined as follows: 

 ( )
( )
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where ( ),kw x y  is known as the weighting function.  The weighting function first 

proposed for this scheme, which gives rise to the contouring algorithm known as 

Shepherd’s method [81], is 
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This weighting function gives a nonzero value of ( ),kw x y  for all values of x  and y .  

Because each bus k  has a nonzero contribution to every point on the screen, using the 

weighting function of Equation (6.3) is characterized as a global contouring 

algorithm. 

Global methods such as Shepherd’s method are computationally burdensome due 

to the need to consider each bus’s contribution at each pixel on the screen.  As a 

result, several local methods have been proposed in the literature [80].  For the 

implementation of contouring on the GPU, the local weighting function developed by 

Franke and Little is used: 
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where kd  is defined in (6.3).  For this local weighting function, only pixels within a 

distance R  of bus k  will be affected by the value kf .  This weighting function also 

maintains continuity and first-order differentiability of the interpolating function F  

[82] and reduces to the weighting function of (6.3) as R →∞ . 

 
Figure 6.1: The GPU rendering pipeline. 

6.2.3 GPU Programming [83] 

6.2.3.1 The rendering pipeline 

GPU programming is significantly different from CPU programming, and this 

must be taken into account when adapting any algorithm for GPU implementation.  

The basic GPU pipeline, illustrated in Figure 6.1, was originally constructed to 

efficiently render polygons, lines, and points to a graphical display.  The basic steps in 

the GPU rendering pipeline are [83] as follows: 

1. Polygon vertex coordinates, viewable area definitions, color values, texture 

coordinates, and textures are sent to the GPU via OpenGL calls from the CPU. 
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2. The vertex processor transforms coordinates defined via function calls from 

the CPU in step 1 into coordinates relative to the display.  Also, vertices are 

grouped into primitives (points, lines, and triangles) for the later stages of the 

pipeline. 

3. The Cull / Clip / Setup stage takes the primitives that are output from the 

vertex processor and removes unviewable objects.  Also, any primitives that 

are only partially inside the viewable area are clipped. 

4. The rasterization stage determines which fragments are covered by each 

primitive.  Fragments are the rasterized pieces of the polygon and correspond 

to a single pixel of the final output.  Also, per-vertex values such as colors and 

texture coordinates are linearly interpolated across each primitive and assigned 

to each enclosed fragment. 

5. The fragment processor runs on each fragment, performing texture lookups 

and determining the final color that the fragment will be.  For this contour 

implementation, two nondefault fragment processors are used to change the 

behavior of this step. 

6. Once fragment colors have been assigned by the fragment processor, several 

tests (e.g., stencil and z-compare) are run on the fragments to see if they 

should be discarded.  If the pixel passes all tests, then it is blended with the 

current framebuffer entry at its location and the final pixel value is written to 

the framebuffer.  This write to the framebuffer is the final stage of the 

OpenGL pipeline.  For traditional graphics applications, the framebuffer 
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represents the pixels on the current video display.  Framebuffer objects 

(FBOs) make it possible to draw into a texture in video memory rather than 

directly to the video display [84].  This texture can then be read back on a 

subsequent rendering pass.  This technique is used in the GPU-based 

contouring implementation, as discussed below. 

6.2.3.2 Important fragment processor characteristics 

Two of the programmable units on the GPU are the vertex processor and the 

fragment processor, which allow for custom processing of vertices and fragments in 

stages 2 and 5 of the graphics pipeline.  The default vertex processor is used in the 

contouring implementation, so it is not discussed any further.  On the other hand, two 

custom fragment processors are used for contour generation. 

One important aspect of fragment processor programming is that there can be 

fragments at different stages of the pipeline at any given time.  As a result, the 

fragment processor is not allowed to write to any locations in video memory except 

for the framebuffer at the end of stage 5.  Otherwise, each fragment might have to 

wait for another fragment to complete its processing before it can be sent out to the 

framebuffer.  In other words, if the framebuffer is conceptualized as an array of bytes, 

then the fragment processor can only output data to one particular array index in the 

framebuffer, and this array index cannot be changed from within the fragment 

processor.  Although it cannot write directly to texture memory, the fragment 

processor is capable of reading directly from texture memory; in fact, this is how 

traditional polygonal texturing is performed for graphics applications.  Because of 
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these features, it is helpful to think of a fragment processor as having a large set of 

memory addresses it can read from, and only one memory address it can write to, with 

no overlap between these address spaces.  This is fundamentally different from CPU 

programs, where programs routinely read and write to the same memory address. 

Although fragment processors must be programmed with a restrictive set of 

operations, particularly when it comes to memory reads and writes, their sheer 

processing power makes them ideal for speeding up computations that can be 

performed in parallel.  For instance, modern GPUs such as the NVIDIA GeForce 7-

series used in these experiments are capable of performing over 165 billion floating 

point operations per second (gigaflops or Gflops), whereas a CPU of the same 

generation, such as a dual-core Pentium 4, is only capable of around 24.6 Gflops [45].  

More advanced chips, such as the recently released GeForce 8800 GTX, have 

theoretical processing speeds in excess of 500 Gflops.  For cases where the GPU can 

be run near its processing limits, this difference in processing power allows GPUs to 

easily outperform CPUs. 

There are two key issues involved in fully taking advantage of the GPU’s 

computational power.  First, memory reads should be performed as sequentially as 

possible in order to take advantage of hardware caches built into the GPU.  The GPU 

contouring implementation is designed to ensure coherent texture reads by making all 

reads from rectangular textures, where each texel is accessed in a sequential fashion 

from the top-left to the bottom-right.  The other key issue in programming for the 

GPU is to use algorithms which are computationally limited (as opposed to I/O 
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limited).  Contouring algorithms clearly fall into this category, as the bulk of the time 

spent in creating a contour is based on the need to evaluate (6.4) for each pixel within 

the influence region of each bus.  Also, because the processing elements of the GPU 

work in parallel, defining the algorithm using for/next loops allows for simple 

implementation as a fragment processor program. 

6.2.4 Algorithm definition and implementation details 

6.2.4.1 Definition of the contouring algorithm 

Based on Equations (6.2) and (6.4), one definition of the contouring algorithm 

which is well-suited for GPU implementation is as follows: 

1. For each point ( ),x y  

1.1. ( ), 0N x y ←  

1.2. ( ), 0D x y ←  

1.3. ( ), 0F x y ←  

2. For each bus k  

2.1. For each point ( ),x y  such that ( ), , 0k FLw x y ≥  

2.1.1. ( ) ( ) ( ),, , ,k FL kN x y N x y w x y f← +  

2.1.2. ( ) ( ) ( ),, , ,k FLD x y D x y w x y← +  

3. For each point ( ),x y  such that ( ), 0D x y >  

3.1. ( ) ( )
( )

,
,

,
N x y

F x y
D x y

=  

4. For display to the screen, each value of F is mapped to a color as discussed in 

[40] and stored as the color value for point ( ),x y . 
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Table 6.1: Algorithm implementation on the CPU and the GPU 

Algorithm 
Steps CPU Implementation GPU Implementation 

1 
Allocate space for N 
and D in main system 
memory. 

Allocate space for AccumTexture and 
ContourTexture on the GPU. 

2 

For each bus, calculate 
and store the numerator 
and denominator values 
within each bus’s 
influence region. 

Draw a circle of radius R around each bus 
with the video output redirected to 
AccumTexture. Use a custom fragment 
shader to calculate and store the N values in 
the red channel and the D values in the green 
channel.  Use additive blending to perform 
accumulation as each bus is drawn. 

3 

Iterate through each 
element in the N and D 
arrays and divide the 
numerator by the 
denominator.  Look up 
the corresponding color 
in the color map and 
write this color to a 
bitmap. 

Draw a rectangle of size Res with its texture 
set to AccumTexture and the video output 
redirected to ContourTexture.  Using a 
custom fragment shader, divide the red 
channel values of AccumTexture by the green 
channel values.  For each pixel, look up the 
corresponding color in the color map and 
write this color to ContourTexture. 

Each of the algorithm steps given above can be translated into a set of 

instructions on the CPU or GPU, as shown in Table 6.1.  For the GPU 

implementation, the C programming language was used with the GLUT library [85] 

for OpenGL programming and the Cg language was used for fragment processor 

programming [86].  The implementation of the algorithm was split into three stages, 

explained in detail below. 

6.2.4.2 Implementation step 1—allocation of textures and framebuffer objects 

To begin, texture memory is allocated for two textures: AccumTexture  and 

ContourTexture .  AccumTexture  is created as a GL_RGBA16F_ARB formatted 

texture, which allocates four components (red, green, blue, and alpha) for each texel.  

Each component stores an IEEE-formatted 16-bit floating point value.  

ContourTexture  is allocated as a standard 32-bit texture containing 8-bit red, green, 
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blue, and alpha components for each texel.  AccumTexture  stores ( ),N x y  in its red 

channel and ( ),D x y  in its green channel.  ContourTexture  stores the finished, color-

mapped contour as a texture which can then be rendered to the display.  Both textures 

are created with the same dimensions, denoted as Res .  This size is the resolution of 

the contour to be created (e.g., if a contour is to be created which exactly fits into a 

640 480×  window, then the two textures will have dimensions 640 480× ).  Because 

the algorithm requires rendering to these textures rather than simply reading from 

them, a framebuffer object is created that allows the GPU to write to the textures [84].  

The framebuffer objects used to write to each texture are named AccumFBO  and 

ContourFBO.  The allocation of texture memory occurs only when the desired 

contour resolution changes (typically when a window is resized), which reduces the 

amount of time spent allocating memory on the GPU. 

6.2.4.3 Implementation step 2—accumulation of the numerator and 
denominator values for each pixel 

Once the textures are allocated, AccumFBO  is set as the output framebuffer for 

the GPU.  By setting AccumFBO  as the output location, all pixels drawn by the GPU 

are sent to AccumTexture  rather than the video display.  After AccumFBO  is 

attached, glClear() is called, which performs steps 1.1 and 1.2 of the algorithm by 

clearing the red and green channels of AccumTexture.  Next, a custom fragment 

processor is bound to the GPU that takes as arguments the position of the bus that is 

currently being drawn, ( ),k kx y , and writes out the values ( ), ,k FL kw x y f  to the red 

channel and ( ), ,k FLw x y  to the green channel.  The final setup step is to enable 

additive blending on the GPU, which performs the assignment and sum operations 
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needed in steps 2.1.1 and 2.1.2 of the algorithm.  Once all the setup operations are 

completed, for each bus k , a circle of radius R  is drawn around the point ( ),k kx y .  

After this has been done for each bus in the system, the red channel of AccumTexture  

contains ( ),N x y  and the green channel contains ( ),D x y  for all points in the 

contour. 

6.2.4.4 Implementation step 3—evaluation of the interpolating function and 
color mapping 

For the next step in the contouring process, ContourFBO  is attached as the 

render target for the GPU.  A call to glClear() is then made to execute step 1.3 of the 

algorithm.  Next, AccumTexture  is set as the current texture to be read within the 

fragment processor of the GPU.  A custom fragment program is then bound to the 

GPU which performs steps 3.1 and 3.2.  Finally, a rectangle of size Res is drawn with 

texture coordinates assigned so that each point in AccumTexture  corresponds to one 

output pixel.  Once this draw operation has completed, ContourTexture  contains the 

color-mapped contour.  This texture can then be drawn to the screen by binding 

ContourTexture  as the current texture and rendering an appropriately sized rectangle 

using the default fragment processor. 

6.2.5 GPU-based contouring algorithm performance results 

For the results given below, the test system used consisted of an AMD Athlon 64 

X2 Dual Core 3800+ CPU with an NVIDIA GeForce 7600 GT GPU.  Timings for the 

GPU algorithm were determined using the high-resolution Windows performance 

counter [87], with an average taken over 100 contour renderings. 
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Figure 6.2: One-line diagram of contour area. 

The power system one-line diagram used as the basis for the results and figures 

shown below is provided in Figure 6.2.  The number of buses that influence the 

contour area ranges from 199 (for an influence radius of 1) to 818 (for an influence 

radius of 400).  The data that is contoured is the per unit voltage level at each bus.  

The color map used to convert voltage levels to colors is shown in Figure 6.3. 

 
Figure 6.3: Contour color map relating per unit voltage to displayed color. 

6.2.5.1 The effect of changes in Res  

There are two key parameters which affect the performance of the contouring 

algorithm.  The first of these parameters, Res, controls how large a contour image to 

create.  For the highest-quality contour, Res  should be set to the same size as the 

screen area the contour covers upon final rendering to the video display.  However, 
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reducing Res  to a smaller value results in a decrease in rendering time; therefore, a 

tradeoff must sometimes be made between contour resolution and rendering speed.  

To explore the effects of varying Res, the system was contoured with several different 

resolution levels.  In these tests, R, the radius of influence, was held at a constant 

value of 100.  Figure 6.4 shows an example contour rendering with Res  set to 

1024 768× . 

 
Figure 6.4: Contour rendering with resolution set to 1024x768, radius of influence set 
to 100. 

Table 6.2 shows the timing results obtained for various contour resolutions.  In 

order to gauge the performance of the algorithm in a typical control room setting, 

resolutions were chosen which are commonly used in both projection and 

conventional video displays.   
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Table 6.2: Timings for seven contour resolutions with the influence radius set to 100 

Res   

Width Height Common Name Time to render a contour (seconds) 
3840 2400 WQUXGA 0.938 
1920 1200 WUXGA 0.249 
1600 1200 UXGA 0.208 
1280 1024 XGA+ 0.150 
1024 768 XGA 0.100 
800 600 SVGA 0.066 
640 480 VGA 0.050 

 
Figure 6.5: Effect of contour resolution on contour rendering times. 

Figure 6.5 illustrates the effect on rendering time as the contour resolution is 

varied.  The x-axis is the number of megapixels associated with each tested 

resolution, and the y-axis is the amount of time it takes to render one contour.  The 

linear relationship between resolution and rendering time indicates that the time 

required to render a particular contour is on the order of the number of pixels in the 

contour.  The fact that this linear relationship holds for resolutions ranging from 
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640 480× all the way up to 3840 2400× indicates that the algorithm does not suffer 

from scalability issues. 

It is also worthwhile to consider the visual impact of changing the contour 

resolution.  For a given screen size ScreenRes , the highest quality contour would be 

obtained by setting ScreenRes Res= , assuming the contour takes up the entire screen 

display.  However, by setting ScreenRes Res< , the speed at which the contour is 

rendered can be greatly accelerated.  In addition, rendering the contour at a lower 

resolution is not necessarily noticeable.  Finally, the usage of advanced texture 

filtering methods can also help to improve the rendered quality of a lower resolution 

contour. 

6.2.5.2 The effect of changes in R  

The other key parameter which affects contour accuracy and rendering speed is 

the radius of influence, R .  Because a circle of radius R  is drawn around each bus 

(i.e., each bus affects a locus of points of radius R  around its location), the contour 

rendering time should scale in proportion to the area of the circle drawn around each 

bus, i.e., quadratically in R .  However, for a contour with a finite area, this 

relationship does not always hold. 

Figure 6.6 illustrates a simple three-bus contouring example where the 

relationship between R  and the number of processed fragments is not quadratic.  The 

left side of the figure shows the case where the circles of radius 1R  drawn around 

buses 1 and 2 fit entirely within the contour area, whereas the circle around bus 3 is 

entirely outside the contour area.  Because the circle drawn around bus 3 does not 
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intersect the contour area, there is no need to draw the circle around bus 3.  On the 

right side of the figure, as the radius is increased to 2R , the circles surrounding all 

three buses are partially inside of the contour area.  In this case, a circle is drawn 

around each bus, but the GPU clips away the portions of each circle that lie outside 

the contour area before the fragment processor stage [83].  As a result, steps 2.1.1 and 

2.1.2 of the algorithm are skipped for the darkened areas of each circle.  Based on 

Figure 6.6, it is clear that linear increase in the influence radius will cause a quadratic 

increase in computation time only if the set of buses influencing the contour area does 

not change and all bus influence regions are entirely enclosed in the contour area.  

Otherwise, the increase in computation time is dependent on the characteristics of the 

area being contoured and the distribution of the influencing buses. 

 
Figure 6.6: Effect of fragment culling on radius of influence effects. 

To examine the effect of changing the influence radius, several timing 

measurements were taken with a fixed contour resolution of 1024×768 while R  was 
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varied from 1 to 400.  The results of these tests are given in Table 6.3.  In addition, 

Figure 6.7 illustrates the complex relationship between the radius of influence and the 

time to construct a single contour. 

Table 6.3: Timing results for several values of influence radius with a constant 
contour resolution of 1024×768 

R  

Number of 
buses 

influencing the 
contour area 

Time to render a 
contour (seconds) 

1 199 0.0225 
5 206 0.0227 
10 221 0.0229 
25 274 0.0249 
50 367 0.0361 
75 438 0.0665 
100 485 0.1001 
125 514 0.1331 
150 580 0.1838 
200 653 0.2669 
300 753 0.4251 
400 818 0.4994 

 
Figure 6.7: Effect of influence radius on contour rendering time with contour 
resolution set to 1024×768. 
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For the first few values of influence radius—1, 5, and 10—the time to render a 

contour is basically constant.  This indicates that for very low influence radii, the time 

spent rendering a contour is based more on other factors (such as the texture lookups, 

OpenGL calls, etc.) than on the processing time needed to construct the contour.  As 

the influence radius increases to values between 10 and 150, a quadratic relationship 

is evident.  For radii greater than 150, a much more complicated relationship is 

demonstrated that confirms the behavior discussed above and illustrated in Figure 6.6.   

As with the other tunable parameter Res, there is a tradeoff between how large of 

an influence radius is used and how fast the contours are rendered.  In general, the 

proper choice of R  will be dependent on many factors, including the density of buses 

within the power system under study.  In fact, this is one justification for the usage of 

dynamic influence regions when contouring power system data, as discussed in [44]. 

To illustrate the visual impact of changing the influence radius, Figure 6.8 shows 

how reducing the influence radius from 100 to 25 affects the contour shown in Figure 

6.4.  In Figure 6.8, it is very easy to distinguish the circles that surround each bus, and 

the silhouette of the contour is a series of arc segments, typical for contours with 

relatively low influence radii.  On the other hand, in Figure 6.4, a much smoother 

contour is shown with no obvious circles present.  Ultimately, the individual using the 

contour must decide which value of R  provides a good representation of the 

underlying data without sacrificing too much in terms of rendering speed. 
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Figure 6.8: Contour rendering with resolution set to 1024×768, radius of influence set 
to 25. 

6.2.6 Advantages and disadvantages of GPU-based contouring 
versus CPU-based contouring 

Because implementation of a GPU-based contouring algorithm can require 

significant expenditure of time and resources, it must be justified as an alternative to 

current CPU-based contouring methods.  The greatest benefit of moving contouring to 

the GPU is the decrease in rendering time for contours.  For example, contouring the 

power system area in Figure 6.2 using a resolution of 640×640, with a radius of 

influence of 150, the GPU-based contour takes 0.102 s to render.  Rendering the same 

contour using the CPU (with the method outlined in [44]) takes 5.10 s. 

The rendering speeds of CPU-based contouring methods are significantly slower 

than GPU-based methods for several reasons.  First, CPUs are designed to process 

instructions in a serial fashion, rather than for parallel operations.  GPUs, on the other 
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hand, have always been built to process multiple vertices and fragments in parallel to 

quickly render polygons to the screen.  For instance, the NVIDIA GeForce 7600 GT 

GPU used in the above tests has 12 fragment processors, each capable of performing 

steps 2.1.1 and 2.1.2 of the algorithm independently.  On a CPU, each of these 

operations must be performed serially.  Secondly, modern CPUs typically have a 6.4-

GB/s memory bandwidth, whereas modern GPUs have memory bandwidths of 32 

GB/s and higher [83].  As a result, reading and writing to memory locations can occur 

at a much faster rate on the GPU.  Finally, the clipping operations built into GPUs are 

able to efficiently exclude calculations that do not influence the contour plot (e.g., 

calculations on the shaded pixels in Figure 6.6).  On the other hand, when using a 

CPU to perform contouring, the effects of clipping at the contour boundaries must be 

explicitly calculated.  Another key benefit of using GPUs for contouring is that the 

CPU is then freed up to perform tasks better suited for CPU computation.  For 

instance, while the CPU is used to calculate load flows or perform filtering 

operations, the GPU can independently construct and render a contour with limited 

CPU interaction. 

GPU-based contouring also has several disadvantages when compared to CPU-

based contouring.  The greatest potential disadvantage to using GPU-based 

contouring is the potential loss in accuracy due to floating point errors.  Although 

many of the latest GPUs support 32-bit operations within the fragment and vertex 

processors, using 32-bit floating point incurs a performance penalty relative to 16-bit 

operations.  Another potential difficulty with using 32-bit floating point textures is 
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that blending of 32-bit floating point values, needed to implement steps 2.1.1 and 

2.1.2 of the algorithm, is only possible on the very latest (and most expensive) video 

cards such as the NVIDIA GeForce 8- and 9-series.  Usage of older GPUs with 16-bit 

precision can lead to numerical instability, a problem which does not occur with 

modern CPUs that are capable of handling arbitrarily high precision floating point 

values. 

Another potential problem with using GPU-based contouring is the wide variety 

of capabilities of GPUs.  Although there are some standards for GPU 

programmability as defined by the OpenGL Architecture Review Board, it is 

nontrivial to write a GPU contouring program which takes advantage of all GPUs 

equally.  For instance, writing textures with an NVIDIA GPU is optimized for a 

different set of OpenGL instructions than an ATI GPU.  CPUs do not typically suffer 

as much from this difficulty due to the existence of well-established instruction sets. 

6.3 Benefits and Applications of Accelerated Contouring 

6.3.1 Improvements in usability 

The ability to render faster contours is not inherently useful; the usefulness comes 

from the improvements in usability and new applications which are enabled by the 

faster rendering rates.  Two key criteria used to evaluate a system’s usability are the 

efficiency of the interface, typically measured by the amount of time needed to 

complete a specific task, and user satisfaction in using the interface, which can be 

measured by both subjective and objective means [88].  The improvements in contour 

rendering times facilitated by using the GPU impact both of these criteria. 



 

 171

6.3.1.1 Improvements to user efficiency 

There are two common tasks which are typically used interact with a power 

system contour—navigation and changing of contour parameters.  The first of these 

tasks, navigation, consists primarily of zooming and panning the contour area.  For 

example, if an operator wants to see a more detailed voltage contour within a 

particular area, the operator must first select the area of detail and then wait for the 

contour to be rendered again.  As mentioned above, CPU-based contouring can take 

up to five times as long as GPU-based contouring of the same area.  In terms of user 

efficiency, this means that after the user has signaled to the software that the contour 

area needs to change, it takes a significantly longer time for CPU contouring to catch 

up with the user’s request.  As a result, using GPU-based contouring can significantly 

improve the efficiency of users’ interactions.  Furthermore, any attempt by the user to 

fine-tune either zooming or panning is better facilitated by the rapid contouring 

speeds enabled by the method presented in Section 6.2. 

Changing contouring parameters such as influence radius, resolution, and color 

mapping are also ways in which users interact with contours to better highlight certain 

aspects of the underlying data.  For example, if a color mapping is initially defined for 

a range of 0.95 to 1.05 per unit voltage, it may be necessary to change the range to 

highlight areas where the voltage is lower than 0.95 or higher than 1.05.  The speed at 

which the contour can be regenerated directly impacts the amount of time it takes for 

any such changes to take effect.  Therefore, this is another type of task in which 

improvements to contour rendering can significantly increase the efficiency of using 

contours to understand power system behavior. 
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6.3.1.2 Improvements to user satisfaction 

It has been shown in many previous studies that frame rate is directly related to 

the both performance and satisfaction of users when interacting with computer 

systems (see [49] for a survey of more than 50 such studies).  Figure 3 in [49], which 

summarizes the satisfaction findings from 16 different studies, shows that the lowest 

acceptable refresh rate over a wide variety of tasks is 5 Hz.  Meeting this target would 

require contour rendering that takes 0.2 s or less, a goal that is not easily achievable 

with CPU-based contouring.  One way to get these speeds using CPU contouring is to 

reduce the contour resolution, but evidence suggests that lowering resolution can have 

as much of an impact on user satisfaction as having a low frame rate [89].  Because 

GPUs allow contours to be rendered an order of magnitude faster than CPU contours, 

there should be a marked increase in user satisfaction if contouring is performed on 

the GPU instead.  In addition, one study suggests that increasing the frame rate can 

actually reduce the stress of operators using the visualization [90], which can be 

particularly important if the system operators are already in a state of heightened 

stress due to poor system conditions. 

6.3.2 Visualizing faster data 

Because the rendering times for contours using GPUs are very short, it should be 

possible to display data that arrives at a much faster rate than if CPU-based 

contouring is used.  Using the aforementioned rendering times of 0.102 s and 5.10 s 

for GPU- and CPU-based creation of a single contour, the CPU-based method could 

only keep up with a data rate below 0.2 Hz, whereas the GPU-based contouring 

method could keep up with a data rate of 10 Hz.  CPU-based methods have been 
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adequate in the past for state estimator visualization because the data coming out of 

the state estimator changes around once per minute, or 0.02 Hz.  On the other hand, 

CPU-based contouring of SCADA data, which is sampled every 2 to 3 s, can require a 

significant reduction in both influence radius and resolution to keep up with the faster 

data rate.  Moving forward, the real-time visualization of PMU data, which arrives at 

rates as high as 30 Hz, is impractical for CPU-based contouring and is a clear case 

where GPU-based contouring should be used instead. 

By upgrading the video card, improvements on the 0.102-s rendering time can be 

attained.  For instance, using a GeForce 8800 GT card, the average rendering time 

drops to 0.033 s, which corresponds to a refresh rate of 30 Hz.  Therefore, if this 

video card is used, contours can be updated in real time based on PMU data coming in 

at 30 samples/s.  One of the other advanced metering devices deployed on the grid, 

the FNET sensor, returns data to the central server at 10 samples/s.  In addition, 

contouring has been used by the research team developing FNET in order to interpret 

the raw frequency data [91].  Although the videos hosted at [91] were created using 

offline processing tools in MATLAB, real-time contouring of the frequency data 

could easily be handled by either the 7600 or 8800 GT hardware.   

One final application investigated is the visualization of angle difference 

information at the PMU-monitored buses.  The data visualized are the candidateθΔ  

signals defined in (3.1), determined for each bus using an transN  value corresponding 

to 60 s.  This is a much bigger value of transN  than is used for event detection, and the 

reason a longer transN  is used is that it keeps any changes in the angles visible to the 
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operator for an extended period of time as illustrated by the ( )3
transN  case in Figure 3.3.  

Showing these angle contours to an operator would be a useful complement to the 

event detection work, in that an operator, upon noticing a substantial shift in phasor 

angles, could then query the event detection algorithms to help determine what causes 

these angle changes.  Figure 6.9 shows how this visualization would look during the 

TVA line outage analyzed in Section 4.1.2.  The color mapping used is shown in 

Figure 6.10.  The change in the contour before and after the event highlights the 

change in angles on the system and would draw the attention of system operators for 

further investigation.  Also, the use of an transN  value of 60 s lets the change stay 

visible for 60 s after the event occurs; this is why the same contour is shown at 49 s 

and 103 s.  The deadband between -0.75 and 0.75 degrees in the colormap 

corresponds to having an angle threshold of 0.75 degrees in event detection, since the 

angle change must exceed 0.75 degrees before being highlighted. 

Alternative methods of processing the incoming data could be used, or alternative 

data such as voltage or frequency could be visualized without the extensive 

processing used to obtain useful angle signals.  Regardless, using GPUs provides a 

great deal more flexibility in terms of PMU data visualization, and this technique 

should significantly improve the potential of having real-time data visualization 

within control centers. 
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Figure 6.9: Contour of angle changes on the TVA system before and after the line 
outage. 

 
Figure 6.10: Colormap used for angle contours in Figure 6.9. 
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7 CONCLUSIONS AND FUTURE WORK 

Chapter 2 of the dissertation deals with the processing of phasor measurement 

data in order to detect system events.  The results presented for FIR and median 

filtering highlight the key differences in these two filtering methods—FIR filtering 

provides more consistent attenuation of noise and unwanted frequency components, 

whereas median filtering preserves step changes in the system angles.  When FIR 

filtering is used in event detection, the main downside is the increased delay due to 

the corruption of the step change and the need to capture a longer transition region.  

Also, as seen with the filtering of the generator outage data, the choice of the cutoff 

frequency can have a significant impact on the performance of FIR filtering.  On the 

other hand, with median filtering, performance is difficult to predict due to the widely 

varying response depending on filter length.  Also, the median filtering results based 

on the real data obtained from TVA show that median filtering is less effective at 

removing noise from the angle measurement signals.  Ultimately, the choice of using 

FIR or median filtering boils down to a tradeoff between minimizing delay in the 

detection of the event (for which median filtering is superior) and minimizing errors 

in the determination of observedθΔ  (for which FIR filtering is superior).  There are 

several useful avenues of research for future work in the area of PMU data filtering.  

One area of research, mentioned briefly in the main text, is to determine whether or 

not hybrid FIR-median filters, which have been shown to work in image processing 

applications, have similar benefits when applied to PMU measurements.  In addition, 
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there are entire classes of filtering methods which have not been considered, including 

infinite impulse response (IIR) filtering and other types of nonlinear filters. 

Chapter 3 discusses three algorithms which can be used to detect three different 

types of events—single-line outages, double-line outages, and generator outages.  The 

way single- and double-line outages are modeled is typical when using the dc power 

flow approximations, and it is unlikely that any improvements can be made to the line 

outage modeling without adding additional state information.  The usage of 

geographically based filtering of the double-outage set is shown to significantly 

reduce the search space for double-line outage detection.  Future work examining 

whether or not the filtered event set captures real power system events would be 

useful.  The generator outage modeling makes some significant assumptions in order 

to predict the postevent angles on the system, including frequency uniformity across 

the grid.  This assumption, which results in accurate droop-based participation factors, 

leads to a significant delay between event occurrence and detection.  One possible 

area of future research would be to look at different ways to model the changes in the 

system due to generator outages in order to detect and classify these outages more 

rapidly. 

The third chapter examines the performance of the three algorithms from Chapter 

3 in classifying events.  All of the results show that in the majority of the events the 

algorithms can properly classify events based on the observed angle changes due to 

the events.  Reducing the number of PMUs on the system is shown with both single- 

and double-line outages to result in a significant increase in the number of events that 
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cannot be differentiated.  This is one justification for increasing the PMU deployment 

on the power system, which currently has a very sparse deployment of these advanced 

sensors.  In addition, the failure of the dc power flow assumptions for several of the 

single- and double-line outages due to high R/X ratios is clearly seen, showing that 

the algorithms are ultimately dependent on how well the real system meets the dc 

power flow assumptions.  For the generator outage studies, the algorithm performs 

well in ranking each generator outage, although lag between event occurrence and 

classification should be reduced in order to improve situational awareness.  One way 

to extend this research is to obtain and test the algorithms with more real-world data 

and larger test systems. 

The PMU placement problem is discussed in Chapter 5, beginning with definition 

of several possible objective functions and moving on to description of two means of 

optimizing based on these objectives—exhaustive search and simulated annealing.  

The overwhelming computational burden of exhaustive search and the shortcomings 

of using an approximate optimizer like simulated annealing are both discussed.  

Results from the simulated annealing and exhaustive search optimizations for the 

placement of three and six PMUs show that simulated annealing does provide useful 

results, although it is suboptimal.  Testing other methods of large-scale combinatorial 

optimization such as genetic algorithms would be useful, particularly if the results are 

compared to simulated annealing and exhaustive search.  The results obtained by 

using simulated annealing for the placement of 9, 18, and 27 PMUs show that 

deploying more PMUs will definitely increase the performance of the event detection 
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algorithms and also that simulated annealing scales much better than exhaustive 

search. 

Finally, Chapter 6 presents a new method of contouring power system data which 

leverages the abundant computational power of modern graphics cards.  The results 

indicate that moving contouring from the CPU to the GPU can result in significant 

improvements to usability and provide opportunities for development of applications 

that render newer measurement data in real time.  In continuing this work, GPU-based 

visualization techniques from other domains such as medical imagery and scientific 

visualization can also be evaluated to see whether or not they provide a better 

understanding of the system conditions to operators.  Formal evaluations of how 

GPU-based techniques impact user performance and satisfaction would also be useful 

to obtain. 

As new measurement devices are developed and deployed on the grid, 

applications to improve situational awareness should be one of the top priorities due 

to its importance in power system operations.  This dissertation, which focuses on 

both the processing and presentation of the new data available from PMUs, should 

help in improving the awareness of grid conditions and, by doing so, improve the 

reliability of the power grid. 
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APPENDIX A 37-BUS SYSTEM DESCRIPTION 

The basis for this system is the 37-bus system from Example 13.9 in [92].  The 

machine and exciter models were changed to the GENROU [93] and IEEET1 [94] 

models to provide a more detailed model than the original case, and the parameters 

for these models were taken from similarly sized units in the Eastern Interconnect.  In 

addition, an IEEEG1 governor [69] was added to each machine using parameters from 

similarly sized units in the Eastern Interconnect.  A full description of the system is 

provided in Tables A.1-A.10.  Figures A.1 and A.2 show the full system one-line 

diagram and the 18 PMUs monitored for outage testing, respectively. 

Table A.1: Bus information 

 

Table A.2: Generator information 
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Table A.3: Line information 

 

Table A.4: Load information 

 
Table A.5: Switched shunt information 
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Table A.6: Transformer control information 

 

Table A.7: Line shunt information 

 
Table A.8: Machine model information (all nonspecified parameters are zero) 

 
Table A.9: Exciter model information 

 



 

 183

Table A.10: Governor model information (all nonspecified parameters are zero) 

 

 
Figure A.1: One-line diagram of the 37-bus system. 
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Figure A.2: One-line diagram with 18 PMU buses as defined in Section 4.1.1.2 
highlighted. 
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