
EVENT DETECTION AND VISUALIZATION BASED ON PHASOR
MEASUREMENT UNITS FOR IMPROVED SITUATIONAL AWARENESS

BY

JOSEPH EUZEBE TATE

B.S., Louisiana Tech University, 2003
M.S., University of Illinois at Urbana-Champaign, 2005

DISSERTATION

Submitted in partial fulfi llment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

 Professor Thomas J. Overbye, Chair
 Professor Peter W. Sauer
 Professor David M. Nicol
 Assistant Professor Alejandro D. Domínguez-García
 James D. Weber, PowerWorld Corporation

 ii

ABSTRACT
Knowledge of device statuses on the power grid is a crucial component of

situational awareness, and the lack of this knowledge has caused catastrophic failures

in the past. Existing techniques for status identification, such as topology processing

and state estimation, rely almost exclusively on local area measurements without time

stamps or synchronization, and can be significantly improved by leveraging PMU

data which is available over wider areas at much faster data rates. The processing

needed to extract steady-state angle information from PMUs is the first topic of

discussion, and the advantages and disadvantages of two types of digital filters—

finite impulse response and median—are investigated. The usefulness of each

filtering method is demonstrated with a broad spectrum of signals, both real and

simulated. The proposed method of system event identification is then presented in a

general form, with specific algorithms defined for detecting single-line, double-line,

and generator outages. Test results for each of these event classes are provided to

demonstrate the efficacy of the proposed event detection algorithms.

In addition to the new methods presented for the processing of PMU data,

techniques for visualization of PMU data in its processed and unprocessed forms are

described. A new technique based on graphical processing units (GPUs), developed

to allow rendering speeds to match the relatively fast data rate of PMUs, is presented,

along with results demonstrating the marked increase in visualization speed. Some of

the benefits of speeding up contouring are discussed, including how PMU derivative

information can be visualized with GPU-based rendering.

 iii

TABLE OF CONTENTS

1 INTRODUCTION..1
1.1 Motivation ..1
1.2 Literature Review...4
1.3 Dissertation Overview ...9

2 FILTERING OF PMU MEASUREMENTS TO EXTRACT STEADY
STATE VALUES ..13
2.1 FIR Filtering of Measurements ..13
2.2 Median Filtering of Measurements ..19
2.3 Comparing FIR and Median Filtering..23
2.4 Filter Evaluation...26
2.5 Conclusions ..38

3 DETECTION OF EVENTS USING PMU DATA39
3.1 Event Detection and Determination of the Angle Change Vector39
3.2 Single-Line Outage Detection ..48
3.3 Generator Outage Detection ..54
3.4 Double-Line Outage Detection ..66

4 EVENT DETECTION EVALUATION..79
4.1 Single-Line Outage Examples ...79
4.2 Generator Outage Examples ..104
4.3 Double-Line Outage Examples .. 113

5 PHASOR MEASUREMENT UNIT PLACEMENT FOR EVENT
DETECTION..134
5.1 Overview ..134
5.2 Objective Function Definition ...134
5.3 Searching Methods...138
5.4 Results for Optimal PMU Placement to Detect Single-Line Outages143

6 GPU-BASED VISUALIZATION OF PMU DATA149
6.1 Overview ..149
6.2 Implementation of Contouring on the GPU149
6.3 Benefits and Applications of Accelerated Contouring170

7 CONCLUSIONS AND FUTURE WORK ...176

APPENDIX A 37-BUS SYSTEM DESCRIPTION ..180

REFERENCES ...185

AUTHOR’S BIOGRAPHY ...193

 1

1 INTRODUCTION

1.1 Motivation

With the increasing load on the power system, along with the massive interarea

transfers enabled by the deregulation of the 1980s and 1990s, there is a clear need to

have reliable information about both the local system and external systems. Tellingly,

four of the six major North American blackouts were due in part to a lack of

situational awareness [1]. Although there is a clear need for sharing of information,

there is limited real-time sharing of SCADA or state estimator information in the

United States [2]. However, as phasor measurement units (PMUs) [3] have been

deployed throughout the North American power grid, there have been significant

efforts to ensure that PMU data is shared between all interested parties [4]. Because

PMU data is more widely available in near real-time than other power system

measurement data, it can provide unique insights into the global operation of the grid.

However, new techniques must be developed to apply the data that PMUs provide in a

useful manner.

Extensive research in applying PMU information to improve situational

awareness has been conducted since their introduction, including applications in state

estimation [5-7], dynamic security assessment [8-10], and visualization [11-13]. Yet

another key aspect of situational awareness in the power grid is the knowledge of

transmission line, transformer, and generator statuses. Beyond incorporation of

PMUs into traditional state estimation, which can include topology estimation [14],

there has been little research into how PMUs can be used to enhance topology

 2

information, particularly outside of the local area. Current network topology

processors focus on obtaining local system topology information through the use of

predominantly local area measurements. However, connectivity information over the

wide area is very important for system operations and is a major reason for the

existence of the NERC System Data Exchange (SDX) [1]. Because there is

significant value in improving system operators’ knowledge of external system line

outages, a method which utilizes PMU data to effect this improvement has been

developed.

The method discussed in this work makes use of SDX information, as it is

currently the best source of systemwide line status information. One of the most

telling indications of its usefulness is its application in processing transmission

loading reliefs (TLRs) on the North American power grid. However, despite

increased awareness of the importance of interarea information exchange since the

August 2003 blackout, updates to the SDX are still only required on an hourly basis

[15]. Because much can happen on the power grid within an hour, there is a need for

tools which are capable of providing more current information on external system

outages. This work looks at ways to improve upon the status information from local

topology processors and the NERC SDX by incorporating PMU data which, like SDX

information, is also available over the entire interconnect through phasor data

concentrators (PDCs) [4]. Although the methods presented here would work with any

source of synchronized angle data, PMUs are the only devices which are deployed

 3

over the entire power grid and are capable of providing geographically dispersed,

synchronized, and accurate phasor angle measurements.

The processing needed to extract steady-state angle information from PMUs is

the first topic of discussion, and the advantages and disadvantages of two types of

digital filters—finite impulse response and median—are investigated. The usefulness

of each filtering method is demonstrated with a broad spectrum of signals, both real

and simulated, which are meant to be representative of typical power system signals.

This process is necessary to convert the raw angle measurements into a form which

can be used with traditional steady-state analysis tools such as the power flow. The

intended application of this filtering, system event identification is then presented in a

general form, with specific algorithms defined for detecting single-line, double-line,

and generator outages. Test results for each of these event classes are provided to

demonstrate the efficacy of the proposed event detection algorithms using both real

and simulated data. Several optimization problems are also defined to guide

placement of PMUs for event detection, and results are presented based on usage of

exhaustive search and simulated annealing to perform the placement optimization.

In addition to the new methods presented for the processing of PMU data,

techniques for visualization of PMU data in its processed and unprocessed forms are

described. A new technique based on graphical processing units (GPUs), developed

to allow rendering speeds to match the relatively fast data rate of PMUs, is presented,

along with results demonstrating the marked increase in visualization speed. Some of

 4

the benefits of speeding up contouring are discussed, including how PMU derivative

information can be visualized with GPU-based rendering.

1.2 Literature Review

The basic operations needed for PMUs to work, including relevant filtering and

signal processing techniques, were first described in 1983 [16] and the first prototype

PMU was developed in 1988 [17]. Shortly after these new measurement devices were

described, PMU applications related to situational awareness began to be researched.

Initial applications using PMUs were primarily focused on improvements to state

estimation based on the ability to directly measure system states [7]. A key aspect of

this initial research into PMU usage was the need for traditional SCADA

measurements (such as breaker status, voltage magnitude, and current magnitude) to

accompany PMU measurements in order to use the new data. The problem with this

dependence on SCADA measurements is that, outside of the local control area,

SCADA measurements are usually unavailable. One way in which researchers have

attempted to get around this dependence on SCADA measurements has been to

determine how complete coverage of the power system could be obtained using only

PMU measurements. The key paper on this topic demonstrates that complete

observability could be obtained with as few as one fourth to one third of the system

buses having PMUs [18]. Unfortunately, current coverage of PMUs is still well

below this number (e.g., for the Eastern Interconnect, only 60 PMUs are currently

online [19]). Additional work in limited placement of PMUs for incomplete

observability fails to provide applications in which this partial observability would be

 5

useful beyond incorporation into traditional state estimators [20]. Besides

applications in state estimation, additional research has been performed in the usage

of PMUs for system monitoring. Monitoring of power system harmonics based on

PMU data is discussed in [21] and [22], although there is limited discussion of how

PMU location and filtering can affect the applicability of this monitoring task for

improving operator awareness. Fault detection and classification based on highly

localized PMU measurements has also been researched. Reference [23] provides an

overview of the different methods proposed in this area and notes that all of the

currently developed methods for fault detection require PMUs to be located at one or

more of the terminal buses of the faulted transmission line. Finally, direct

visualizations of phasor angles for system monitoring have been developed [10-12],

although there is little guidance in how the visualized angles should be interpreted by

system operators.

The notion that PMU measurements can be applied in more problem domains,

particularly event detection and classification, is supported by the literature. The

close correspondence between PMU angle measurements and correct steady-state

phasor angles on the system has been demonstrated in numerous studies [24-26]. In

addition, the IEEE standard governing PMU accuracy requires that the total

vectorized error (TVE), defined as the normalized Euclidean distance between the

true and measured steady-state phasors, be within 1% [27]. Although it cannot be

assumed that SCADA and state estimator data is available over the entire

interconnect, some additional wide area information, such as that available through

 6

the NERC System Data Exchange (SDX) [28], can also be used for interpretation of

PMU data due to the system-wide availability of this information. Usage of PMU

measurements for comprehensive dynamic information is less promising, mainly due

to the lack of a unifying standard on PMU behavior during transient conditions.

Event detection and classification can be divided into three key components:

detecting when an event has occurred, extracting salient information about the event

from the raw data, and classifying the event based on this information. For the first

two tasks, detection and information extraction, the largest body of research is in the

area of image processing due to the need for accurate edge detectors in many

applications. Edge detectors are essentially step change detectors and can be used to

return not only step change locations but also the amplitude of step changes. An

excellent survey of classic edge detection techniques is provided in [29]. A widely

used “hill climbing” method used to accurately detect edges which involve ramp

rather than step changes is detailed in [30] and serves as the basis for the edge

detection techniques described later in the dissertation. Moving beyond linear filters,

nonlinear filtering for edge detection, in particular median filtering, has been shown to

outperform linear filtering for certain image processing [31] and power electronics

applications [32]. However, there are two key issues which make nonlinear filters

less appealing—the potentially higher computational burden relative to linear filters,

and the inability to determine the filter’s performance a priori. One commonality

among all edge detectors surveyed is the domain-specific length of the filter used. In

all cases, analysis of representative data must be conducted to determine the most

 7

appropriate filter length for a given application [30]. In addition to the image

processing literature, there has also been extensive research into event detection,

feature extraction, and event classification in power systems, primarily centered on

fault detection and classification. Modern methods of solving this problem rely on

techniques from the field of artificial intelligence (AI), such as neural networks [33]

and expert systems [34]. There has also been significant work in detecting power

quality disturbances using various data processing techniques, including wavelet

analysis, expert systems, neural networks, and genetic algorithms [35]. Although

these methods could be used for detecting changes and extracting information about

the changes in system states, adapting these techniques to wide area event

classification is not feasible due to the unavailability of quality training data. In the

area of large-scale, steady-state event detection, the primary tools currently used are

topology processing and state estimation, relying almost exclusively on traditional

power system data [36]. One notable exception is [37], which provides a method for

direct determination of external system outages based on expected correlations

between changes in internal system states and changes in boundary flows.

Power system visualization was first discussed in the context of visualizing load

flow solutions using the IBM System/360 mainframe computer [38]. Additional work

in visualization techniques continued throughout the 1970s, 80s, and 90s; reference

[39] provides a concise overview of state-of-the-art visualization techniques

developed up to the mid-1990s. There has since been substantial research and

deployment of system visualizations throughout control centers with a focus on

 8

increasing situational awareness of grid operators [40, 41]. In addition, formal

evaluation has shown the potential benefits of several visualization techniques such as

voltage contouring and network flow animation [42, 43]. One key similarity among

all currently used visualization methods is the reliance on the CPU to perform any

necessary calculations. This has been sufficient in the past because rendering times

have only had to keep up with the relatively slow rates of SCADA and state estimator

data, typically on the order of seconds or minutes. Because PMU measurements

provide data at rates which are an order of magnitude faster, CPU-based techniques

will be difficult to use if real-time visualization is desired. Taking as one example

voltage contouring, one of the fastest techniques currently used for CPU-based

voltage contouring requires 0.63 s to render a contour of a medium-sized system [44];

however, real-time visualization of PMU data, which has a data rate of 30 frames per

second (fps), would require rendering times to be shorter than 0.033 (1/30) s. It has

been shown in numerous applications that one way of achieving significant

visualization speedups is through the usage of programmable GPUs. The promise of

improved graphical performance through the utilization of GPUs is based on the

massive computation power of modern GPUs—for instance, some of the latest GPUs

such as the GeForce GTX 280 have theoretical processing speeds in excess of 900

billion floating point operations per second (Gflops) which is much higher than

modern CPUs which are only capable of around 30 Gflops [45]. References [46] and

[47] provide a broad survey of applications in which GPUs have provided significant

acceleration of visualization techniques. The use of GPUs to speed up scattered data

 9

interpolation, the more formal name for the contouring techniques used in power

systems, of three- and four-dimensional data is presented in [48]; one of the key

results is that interpolating data on a 1283 grid, with 350 000 data points, requires only

0.328 s. In addition, it was found that using GPU-based data interpolation can

facilitate real-time updating of data-driven displays at frames rates of approximately

10 fps. Using power system visualizations to illustrate data trends, as suggested in

[12], would also require significant reductions in rendering times to obtain frame rates

which are still perceived as responsive [49].

1.3 Dissertation Overview

PMUs provide detailed angle information that is sampled simultaneously at each

measured bus. This capability allows for extremely fast detection of changes in

system angles, which in turn can provide information about events occurring on the

system. Power system events can be modeled as a change in power injection at the

system buses, which can in turn be related to changes in angles through the power

flow equations. Figure 1.1 illustrates how an event on the system is mapped into a

change in angles through a combination of event modeling and application of the

power flow equations.

 10

Figure 1.1: Determining the angle changes on the system resulting from an event.

For each event E from the event set E, a vector ΔP is constructed which models

the event as a set of changes in power injections on the system. The construction of

this ΔP vector varies based on the type of event being considered and is discussed in

more detail below within the sections dealing with each event type. Once the ΔP

vector is determined, the power flow equations are then used to determine the

associated changes in angles on the system, Δθ . Either the ac or dc power flow

equations can be used to perform the mapping from ΔP to Δθ , and the choice

between the two is generally a tradeoff between accuracy and computation time [50].

From a performance standpoint, the ac power flow solution is slower than the dc

power flow solution but provides higher solution accuracy. In addition, the ac power

flow equations require the full state of the system to be known. On the other hand,

utilization of the dc power flow equations only requires knowledge of the system

topology and line parameters. Because complete state information is not available

 11

over the entire interconnect, the dc power flow equations are used in this work. One

form of the dc power flow equations is [50]

1

ω

1 ,

1

ik
ik

ii
i k ik

B k i
X

B
X

−=

= − ≠

=∑

Δθ B ΔP

 (1.1)

where i ω k indicates the existence of a branch between the two buses i and k, and ikX

is the reactance of the branch connecting buses i and k.

Event detection can be considered the inverse of the procedure shown in Figure

1.1, i.e., determination of the event which resulted in an observed set of angle changes

on the system. A formal definition of the problem is

()* arg min

:

observed
E

K
observed

K

E E
∈

= Δ −

Δ ∈

→

θ f

θ

f

E

E

 (1.2)

where K is the number of PMU-observable buses on the system. The mapping f is

represented in Figure 1.1 as the transformation from an event E to a change in angles

θΔ .

Because ()observed EΔ −θ f in (1.2) is calculated independently for each event, it

is possible to separate the event set into C different classes of events and minimize

over each individual class of events:

()

()

()

1

2

*
1

*
2

*

arg min

arg min

arg min
C

observed
E

observed
E

C observed
E

E E

E E

E E

∈

∈

∈

= Δ −

= Δ −

= Δ −

θ f

θ f

θ f

#

E

E

E

 (1.3)

 12

The event detection algorithm of (1.2) can then be broken down into the following

steps:

1. Determine observedΔθ

2. For each class of events c

a. Find the minimizing event *
cE according to (1.3)

Chapter 2 and Section 3.1 provide details on how step 1 is performed. The majority

of Chapter 3 is devoted to describing in detail how step 2.a is performed for single-

line outage, generator outage, and double-line outage event classes. Chapter 4

provides results and analysis for outages on a 37-bus study system (using simulated

data) and the Tennessee Valley Authority system (using real PMU measurements).

Chapter 5 looks at several different objective functions and optimization methods

which can be used to place PMUs for event detection. Chapter 6 describes a new

GPU-based contouring method along with the advantages in terms of usability and

applications. Finally, Chapter 7 presents conclusions based on the remainder of the

dissertation, along with several potential avenues of future research.

 13

2 FILTERING OF PMU MEASUREMENTS TO
EXTRACT STEADY STATE VALUES

In order to evaluate the possibility of an event having occurred on the system, it is

first necessary to determine the quasi-steady-state changes in measured phasor angles,

observedΔθ . The phasor angle measurements at bus i are referred to as []i nθ , where n is

the nth sample of the phasor angle. Because only the quasi-steady-state angle values

are of interest, rather than the total dynamic response, filtering must be applied to the

signal. The key objectives for the filtering process are:

2.C1. Eliminate noise and oscillations.

2.C2. Maintain step changes due to switching of devices.

2.C3. Minimize the amount of delay between an event occurring and the

extraction of the angle changes on the system.

Two filtering methods are evaluated for the purposes of event detection—finite

impulse response (FIR) linear filtering and median filtering. Each of these has its

own advantages and disadvantages which are discussed in detail below. In addition, a

method of quantitatively evaluating filter performance is presented, and the different

filtering methods are evaluating for a range of real and simulated PMU signals.

2.1 FIR Filtering of Measurements

FIR filtering is one of the most common types of digital signal processing used,

due primarily to its stability and linear phase characteristics. In addition, this type of

filter has shown promise in other applications related to PMU signal processing [51-

54]. A general N-order FIR filter takes the following form:

 14

 [] []
0

N
FIR
filt i

i

x n x n iα
=

= −∑ (2.1)

FIR filtering was chosen rather than infinite impulse response (IIR) filtering, the other

common linear filtering method, for several reasons. First, FIR filters are guaranteed

to be BIBO stable because there is no feedback in the system. This can be an

important feature for this application, particularly if measurement noise cannot be

bounded ahead of time. For example, impulse noise has been observed in real PMU

data, and BIBO stability is necessary to ensure that impulse noise does not have a

disastrous effect on the output signal. A second desirable quality of FIR filters is their

linear phase characteristic. Maintaining edge information is crucial in detecting

where angle changes have occurred, along with the magnitude of the angle changes.

Considering the Fourier transform of a unit step function [55],

 ()1 2
1 j

k
k

e ω πδ ω π
∞

−
=−∞

+ +
− ∑ (2.2)

nonuniform displacement of different frequency components could lead to difficulties

in detecting angle changes and properly quantifying the magnitude of the changes.

FIR filters do suffer from some shortcomings relative to IIR filters. FIR filters

typically require higher orders in order to obtain similar frequency response to an IIR

filter. This can lead to increased delay between the occurrence of an event and the

detection of the event. In addition, the lower order of IIR filters results in fewer

computations, although the typical PMU sampling rate of 30 samples/s is orders of

magnitude slower than modern processors which operate in the MHz to GHz range.

 15

Design of FIR filters is also more complex than IIR filter design, primarily due to the

lack of closed-form design equations for FIR filters [55].

Because closed form design equations do not exist for FIR filters, several

different design techniques are typically employed depending on the application. The

two methods most commonly used in FIR filter design are window-based methods

and optimization-based methods. Window-based FIR filter design is conceptually

and computationally simple, with the following three basic design stages [55]:

1. Specify the ideal response within the frequency domain.

2. Determine the corresponding impulse response via the inverse Fourier

transform.

3. Apply a window to determine the causal FIR coefficients which approximate

the ideal impulse response.

This application requires low-pass filtering in order to attenuate undesired

oscillations, leading to three design parameters for a window-based FIR filter design:

the window type, the low-pass cutoff frequency, and the filter order.

In the literature, both Blackman [52] and Hamming [54] windows have been used

to process PMU data. The Blackman window is characterized by a wide transition

band with decaying sidelobes, while the Hamming window has a sharper transition

band with constant sidelobe amplitudes [55]. These two windows, along with the

simpler rectangular window (which has the narrowest transition band but the largest

sidelobe amplitudes), were tested with a simulated PMU angle signal sampled at 30

samples/s for a FIR low-pass filter design having a cutoff frequency of 0.1 Hz. Figure

 16

2.1 shows the results of applying each of these windows to sample PMU data; clearly,

the Hamming window provides the best combination of oscillation attenuation and

delay minimization. Figure 2.2 provides the magnitude response of each of the

different filters used in Figure 2.1; the filter based on the Hamming window provides

a good compromise between the responses of the rectangular window-based filter,

which has poorly attenuated sidebands, and the Blackman window-based filter, which

has a very wide transition band.

Figure 2.1: Responses of 60-order, low-pass, 0.1-Hz FIR filters on a PMU angle
signal using rectangular, Hamming, and Blackman windows.

 17

Figure 2.2: Magnitude response of 0.1-Hz, 60-order, low-pass FIR filters with three
different window types.

The choice of cutoff frequency is based on the lowest frequency anticipated in the

angle oscillations after a system event occurs. Typical power system oscillations at

the 15-Hz frequency (the Nyquist frequency for the a PMU data rate of 30 samples/s)

and below can be divided into two categories: local modes in the frequency range of

0.7 to 2.0 Hz and interarea modes in the frequency range of 0.1 to 0.8 Hz [56]. The

frequencies of the interarea modes on a power system are a function of many factors,

including generator excitation systems, load characteristics, and typical system

operating conditions [57]. To eliminate as much of these low-frequency oscillations

as possible, the low-pass cutoff frequency was set to 0.1 Hz in the FIR filter design.

The cutoff frequency could also be tailored to reflect the expected minimum

 18

frequency of electromechanical oscillations on a given system, e.g., 0.5 Hz for the

Eastern Interconnect [57] and 0.1 Hz for the Western Interconnect [58].

Figure 2.3: Effect of a 0.5-Hz, Hamming-window, low-pass FIR filter on a PMU
angle signal with 30, 60, and 90 filter orders.

The last design parameter, filter order, serves as a tradeoff between delay in

detection of the event (which, for a symmetric FIR filter, is equal to the filter order

minus one divided by two) and attenuation of undesired frequency components. In

Figure 2.3, the same signal from Figure 2.1 was filtered with three FIR, Hamming-

window filters using filter orders of 30, 60, and 90. The 60-order filter provides better

attenuation of the initial overshoot compared to the 30-order filter and has roughly the

same attenuation capabilities as the 90-order filter but with reduced delay. Analysis

of real and simulated data has shown that using a filter of order 61 is a good tradeoff

 19

between delay (1 s, for a 30 samples/s signal) and attenuation. In addition, Chapter 4

provides a detailed look at how a broad range of FIR filter orders affect the ability to

detect events.

Because the goal is to provide a real-time application for use in control centers,

the computational complexity of any filtering operation must be taken into account.

This provides another bound on the filter order, although, as shown above, the delay

and attenuation characteristics are the primary factors used in choosing the desired

filter order. For an N-order FIR filter, the calculation of each element of the output

signal FIR
filtx requires N multiplications and N adds (also known as a multiply and

accumulate (MAC) sequence [59]), according to (2.1). Therefore, the order of the

FIR filter implementation, using “big-O” notation, is O(N). In terms of storage

requirements, only the last N data points must be stored in order to compute the

corresponding output point; therefore, storage is also O(N).

2.2 Median Filtering of Measurements

Because much is known about the typical frequency characteristics of power

system signals, and FIR linear filters are designed using explicit frequency response

characteristics, FIR filters provide a good way to attenuate unwanted oscillations

(criterion 2.C1). However, linear filters in general do a poor job of maintaining step

changes in signals (criterion 2.C2). Instead of maintaining the sharp transition, linear

filters tend to convert the step change into a ramp [32], and this effect can cause a

delay in the determination of the angle change vector (criterion 2.C3). To maintain

step changes and reduce delay, median filtering provides a possible alternative to FIR

 20

filtering. In addition, the usage of median filtering to smooth out signals in power

electronics control applications [32], FNET monitoring [60], and PMU calculations

[61] indicates that this filter type can be a viable alternative to linear filtering.

The basic idea of a median filter is to run a sliding window over the data samples,

then use the median value from each window as the output value. The typical form

used to describe the median filter is [32]

 [] [] [] []{ }median of , , , ,Med
filtx n x n k x n x n k′ ′ ′ ′= − +… … (2.3)

for a median filter of length N = 2k + 1. However, this form of the filter is noncausal

because the output samples are dependent on later samples of the input data. To

convert this into a causal filter, the substitution n n k′= + is made, resulting in the

following causal median filter:

 [] [] [] []{ }median of 1 , 2 , ,Med
filtx n x n N x n N x n= − + − + … (2.4)

By converting from the noncausal form of (2.3) to the causal form (2.4), a delay of

1
2

N − samples is introduced into the output signal. This delay effect is illustrated in

Figure 2.4 for a step change input signal, with the step change occurring at sample 50.

The dependence of the delay on the filter length indicates that lowering the filter

length improves the ability of the median filter to satisfy criterion 2.C3.

 21

Figure 2.4: Illustration of the delay introduced by using a causal median filter with
window length 21 for a step change input signal.

As shown in Figure 2.4, the median filter does not corrupt an unmodified step

change, except for the known delay introduced by the causal median filter.

Unfortunately, power system signals do not typically follow this ideal step change

pattern and instead contain step changes combined with oscillations (as mentioned in

the previous section). Therefore, the ability of the median filter to handle low-

frequency oscillations must be demonstrated in order to ensure it is a viable

alternative to FIR filtering. As presented in (2.4), the median filter only has one

design parameter—N, the size of the window. To ascertain the performance of the

median filter for different values of N, the same PMU signal used in Figures 2.1 and

2.3 was tested with several different window sizes. The outputs of these filters are

shown in Figure 2.5; as with FIR filtering, it is clear that the window length is closely

 22

tied to the ability to attenuate unwanted oscillations; in addition, an increased window

size results in increased delay as expected.

Figure 2.5: Effect of a median filter on a PMU angle signal with window sizes of 31,
61, and 91.

Computational and storage requirements of median filtering are based on the need

to sort incoming data points to determine the median value over each window. The

fact that the window is moved one sample at a time, so that each new median is taken

with just one sample changed, allows for several optimized implementations of the

median filtering algorithm [62], including one method which is capable of calculating

each new output value in O(log N) time with O(N) storage requirements. Therefore,

the computational and storage burden of median filtering is very close to that of FIR

filtering. Practically speaking, median filtering data at 4 kHz with a window length of

 23

5 was achievable as early as 1992 using a 20-MHz digital signal processor [32], and

the computational requirements of median filtering are not expected to be a

determining factor in the filter design.

2.3 Comparing FIR and Median Filtering

In order to compare the performance of FIR and median filtering, several metrics

are adapted from [63] and address the filter criteria given as 2.C1-2.C3:

• Percent overshoot (PO):

[]

)
[]

,

100%

arg max
begin

filt max ss

ss

filt max
n n

x n x
PO

x

x n n
⎡∈ ∞⎣

−
= ×

=
 (2.5)

• Rise samples (RS):

[]

95% 5%

%,
100%p filt ss

RS n n
pn n x n x

= −

∀ ≥ ≥ ×
 (2.6)

• Delay samples (DS):

 50% beginDS n n= − (2.7)

The metrics as defined in (2.5)-(2.7) assume the signal has the steady-state value

before the onset of the event subtracted from all signal values so that the steady-state

value before the onset of the event is adjusted to 0. The percent difference metric is

used to quantify how well the post-event oscillations are damped. The sample value

nbegin is the last sample before the event occurs (i.e., the last sample in which x

maintains its pre-event steady-state value) in the original signal x[n]. The quantity xss

is the steady-state value associated with the post-event system conditions. In Figure

2.6, the quantities used to calculate percent overshoot are labeled for a given filter

 24

output. As []filt maxx n becomes closer to xss, the percent overshoot approaches zero

and the criterion 2.C1, removal of unwanted noise and oscillations, is better satisfied.

Therefore, the best filter would be one which has a percent overshoot of zero, and the

closeness of a given filter to zero is a quantitative measure of fitness with respect to

criterion 2.C1.

Figure 2.6: Values used to calculate percent overshoot (PO).

The second metric given above, rise samples (RS), provides a measure of how

many samples it takes for the output of the filter to reach the new steady state. Delay

is eliminated from this calculation by referencing the rise interval from the sample at

which 5% the new steady state is attained, rather than nbegin. This separates the delay

introduced by the filter from the spreading of the edge information, i.e., it separates

the filter performance with respect to criteria 2.C2 and 2.C3. Figure 2.7 illustrates the

values needed to determine the RS value for a given filter’s output. For perfect edge

preservation, n95% and n5% would be the same sample, leading to an RS value of 0

samples. At the other extreme, for a filter which results in converting the step change

 25

into a very slowly rising signal, RS will be a high number. Therefore, RS provides a

quantitative measure of the fitness of the filter with respect to criterion 2.C2.

Figure 2.7: Values used to calculate rise samples (RS).

The last of the metrics defined above, delay samples (DS), is a measure of how

long after an event occurs before the change in state can be observed. The delay

amount is based on the number of samples it takes for the filtered signal to reach 50%

of the final steady-state value xss. This is an important metric in terms of situational

awareness, because any delay introduced by the filtering operation can reduce the

ability of system operators to react to changing system conditions. Figure 2.8

illustrates how the DS value is calculated for a given filter output. By reducing the

amount of delay introduced by the filter, the DS value can be brought to zero;

however, as discussed in the previous sections on FIR and median filtering, this is

generally not possible due to the usage of causal filtering. However, minimizing DS

 26

is a key concern in order to improve the capability of operators to react to changing

network conditions and serves as a quantitative measurement of criterion 2.C3.

Figure 2.8: Values used to calculate delay samples (DS).

2.4 Filter Evaluation

Using the PO, RS, and DS definitions, it is possible to provide a quantitative

description of the different filtering options available for usage in PMU-based event

detection. A series of tests was run in order to evaluate the capability of various FIR

and median filter designs for this application. The results of these tests are presented

below.

 27

Figure 2.9: RS and DS values for FIR and median filters with filter orders / window
sizes in the range of 1-100 and 1-99 applied to a unit step change.

2.4.1 Step change with no oscillations

The first test performed looks at the response of each filter to a step change in the

input signal with no oscillations after the step change. This would correspond to a

system which has complete damping of all modes after an event occurs. The signal

was constructed to have a sampling time of 1/30 s, corresponding to typical PMU

signals. The onset of the step change was set to occur at sample 60 (i.e., nbegin = 60),

and the amplitude of the step change was set to 1.0. Figure 2.9 illustrates the

performance of the FIR and median filters for filter orders and window lengths

ranging from 1 to 99. The PO values are not displayed, as the values were zero to

within machine precision for all of the filters tested with the basic step change. The

 28

uniformly zero value of RS for the median filters indicates that the median filter does

not corrupt the edge in any way; in contrast, the FIR filters convert the step change

into a ramp and result in significantly higher RS values. In terms of delay, the linear

relationship shown in the second half of Figure 2.9 shows that the FIR and median

filters have equivalent delays for a given filter order or window size (i.e., using an

FIR filter of order N results in approximately the same delay as using a median filter

with window size N).

Although these results show extremely linear behavior for RS and DS in terms of

the filter order, the likelihood of observing a true step change on the power system is

very small; therefore, more realistic signals must also be tested.

2.4.2 Step change with 1-Hz oscillations

The second type of signal which the filters were tested with is a unit step change

with oscillations added after the step change. The oscillation was set to a frequency

of 1 Hz, with a 0.2 damping ratio and magnitude of 0.2, giving rise to the following

signal:

 [] () ()60
2

30

0 60

60
1 0.2 sin 2 60

30

n

n
x n n

e nπ
−

−

<⎧ ⎫
⎪ ⎪= −⎛ ⎞⎨ ⎬+ ≥⎜ ⎟⎪ ⎪

⎝ ⎠⎩ ⎭

 (2.8)

The unfiltered signal is shown in Figure 2.10.

 29

Figure 2.10: Unfiltered test signal used to test filter responses for a step change with
1-Hz oscillations after the step change.

As with the step change test outlined in the previous section, the RS and DS

values were calculated for FIR filter orders of 1-100 and median window lengths of 1-

99. The results obtained are shown in Figure 2.11. By comparing this figure to

Figure 2.9, it is clear that the RS and DS values associated with a given FIR filter

order or median window length are due primarily to the length of the filter rather than

the characteristics of the original signal.

 30

Figure 2.11: RS and DS values for FIR and median filters with filter orders / window
sizes in the range of 1-100 and 1-99 applied to a unit step change with post-step
oscillations of 1 Hz.

The percent overshoot values associated with the different FIR and median filter

lengths are shown in Figure 2.12. For low filter lengths (less than 30), the median

filters perform slightly better than the FIR filters; for filter lengths between 35 and 55,

the FIR filters perform slightly better than the median filters; and for filter lengths

beyond 55, the two filters are essentially equivalent in performance. The key result

shown in this figure is that, although the median filters have consistently lower RS

values compared to the FIR filters, there are very few differences between the two

filter types in terms of DS and PO for a given filter length. Therefore, usage of

 31

median filtering results in significant gains with respect to edge corruption with little

to no compromise in delay or percent overshoot.

Figure 2.12: PO values for FIR and median filters with filter orders / window sizes in
the range of 1-100 and 1-99 applied to a unit step change with post-step oscillations of
1 Hz.

2.4.3 Step change with variable oscillations

Because the data captured by PMUs connected to a real power system can exhibit

oscillatory modes over the range of 0.1 to 15 Hz, it is important to understand how the

filters behave in the presence of these frequencies. To achieve this goal, RS, DS, and

PO values were calculated for signals identical to Figure 2.10 (i.e., with amplitude of

0.2 and damping of 2), with the poststep oscillation frequency varied in 0.1-Hz

increments from 0.1 to 15 Hz. The FIR filters tests were conducted with filter orders

 32

ranging from 1 to 99 in increments of 2, and the median filter tests were conducted

with window lengths ranging from 1 to 99 in increments of 2.

Figure 2.13: RS and DS values for FIR filters with filter orders in the range of 1-99
applied to a unit step change with poststep oscillations of 0.1-15 Hz.

Figure 2.13 shows that the RS and DS values associated with a particular FIR

filter order are independent of the oscillation frequency. The DS value is independent

of frequency because the delay of an FIR filter is a function of its filter order, and RS

is independent because this metric quantifies the effect of the filter on the edge, not

the oscillations. The RS and DS results for the median filters are shown in Figure

2.14; as with the signal tests in Sections 2.4.1 and 2.4.2, median filters have similar

DS values to the FIR filters of the same length. The nonzero RS values are due to the

interference of the poststep oscillations with the median determination around the step

boundary (known as “edge jitter” [64]); however, the highest RS value obtained is

nine samples, much lower than the corresponding FIR filters with similar delays.

 33

Figure 2.14: RS and DS values for median filters with window lengths in the range of
1-99 applied to a unit step change with poststep oscillations of 0.1-15 Hz.

The most significant differences with respect to the two filter types are exhibited

in the PO values. The PO values for the FIR and median filters are provided in

Figures 2.15 and 2.16, respectively. The PO value for each oscillation frequency

consistently decreases as the FIR filter order is increased, as expected from the

frequency response shown in Figure 2.2. On the other hand, the median filters

perform about the same at both low and high frequency extremes.

Figure 2.15: PO values for FIR filters with filter orders in the range of 1-15 applied to
a unit step change with poststep oscillations of 0.1-15 Hz.

 34

Figure 2.16: PO values for median filters with window lengths in the range of 1-15
applied to a unit step change with poststep oscillations of 0.1-15 Hz.

Although the RS values are significantly higher with FIR filters regardless of the

filter length or oscillation frequency, there is a tradeoff between DS and PO values for

both filter types. To investigate this relationship, a new quantity is defined,

filter type
%xPODS , which is the minimum DS value such that for all oscillation frequencies

in the range of 0.1-15 Hz, the PO value is less than or equal to x% for the filter type.

The difference in this metric for the two filter types, FIR median
% %x xPODS PODS− , can

indicate which filter to chose for a desired minimum PO. Figure 2.17 shows that for

small percent overshoot requirements (x < 14), median filtering can achieve the

desired percent overshoot with less delay than FIR filtering.

 35

Figure 2.17: PODS௫%FIR െ PODS௫%median based on unit step and oscillation signals with
frequencies of 0.1-15 Hz.

2.4.4 Real PMU signal

To test the filters’ performance in extracting steady-state angles from PMU

signals, a test was also conducted using a PMU angle signal obtained from a North

American power company. The particular signal used for this test, along with the

steady state estimate, is shown in Figure 2.18. The value for beginn was determined by

inspection to be 401. The steady state value after the event occurs was estimated to

be 4.28, obtained by taking the mean of the signal values after beginn .

 36

Figure 2.18: Real PMU angle signal used to test filters.

FIR and median filters were tested with filter lengths in the range of 1-99. The

RS and DS values obtained are shown in Figure 2.19. As in previous tests, the DS

Figure 2.19: RS and DS values for median and FIR filtering of a real PMU angle
signal.

 37

values are the same for a given filter order or median length, and the median filter has

a lower RS value than the FIR filter for all filter lengths except one (the filter length of

29). As in the previous tests, the median filters are able to preserve the edge shape

(lower RS value) for the same amount of delay (DS value).

Figure 2.20: PO values for median and FIR filtering of a real PMU angle signal.

The final metric, percent overshoot, is displayed in Figure 2.20. Based on the

results shown in Figure 2.15, the expected monotonic decrease in PO values for

increasing FIR filter orders is clearly seen. The characteristics of median filtering are

more difficult to characterize; for median window lengths which closely match the

oscillation period of the original signal, the median filter does an excellent job of

eliminating oscillations and results in very low overshoot values. On the other hand,

as the median window length increases, the PO value increases. This is not desirable,

 38

as it indicates an increased amount of delay and processing time is actually reducing

the effectiveness of the filter. This type of behavior is also seen in Figure 2.16 and

shows that the median filter is not as robust as FIR filtering, particularly if the

oscillation frequencies are either unknown or widely varying.

2.5 Conclusions

The sensitivity of the filter response to oscillation frequencies is much more

prominent in median filtering than in FIR filtering. For systems in which the

postevent oscillation frequencies are easily predicted and at specific frequencies,

median filtering can provide much better edge preservation while maintaining low

percent overshoot. On the other hand, for systems with broad ranges of oscillation

frequencies, higher-order FIR filtering is more robust. Because the oscillations seen

on a system are due to an array of factors, including the type of event and the event

location, it is recommended that FIR filtering be used to maintain robustness. The

main downside of FIR filtering, edge distortion, is accounted for in the determination

of observedθΔ , as discussed in the following chapter.

 39

3 DETECTION OF EVENTS USING PMU DATA

3.1 Event Detection and Determination of the Angle
Change Vector

3.1.1 Basic procedure

The raw angle measurements are first filtered using one of the methods presented

in the previous chapter, with the output of the filter named [],i filt nθ for the filtered

phasor angle measurements from bus i. Once the angles have been filtered, a

candidate angle change signal [],i candidate nθΔ is constructed for each bus i:

 [] [] [], , ,i candidate i filt i filt transn n n Nθ θ θΔ = − − (3.1)

where transN is the number of samples over which the difference in angles is

calculated (see Figure 3.1).

Figure 3.1: Definition of Ntrans, which is used to generate candidate signals
Δθi,candidate[n].

 40

Figure 3.2: Peak detection and determination of the angle change vector.

To detect whether an event has occurred, a method commonly used in edge

detection [30] was adapted for our purposes. The first step in the process is to

continuously compare each of the candidate signals [],i candidate nθΔ against a threshold

value τ . If the candidate signal at bus j exceeds the threshold value at sample initialn ,

candidate signal [],i candidate nθΔ is then tracked for initialn n> until it begins to

decrease. A decrease implies that the maximum of [],i candidate nθΔ has been reached,

and the observedΔθ vector is then constructed using the angle information from all of the

buses. The pseudo-code for this “hill climbing” procedure, visualized in Figure 3.2,

is:

[]

[]()
()

[] []()

,

2
,

,

2
,

2
, , ,

if for a bus ,

sign

while 0

1

+

j candidate initial

max initial

test initial

j candidate

j candidate initial

j candidate

j candidate j candidate test j candidate test

test test

n j

n n
n n

n

n n

n n

θ τ

θ

θ

θ

θ θ θ

Δ >

←

←

Δ ← +∞

Λ← Δ

Δ ≥

Δ ←Λ× Δ + −Δ

←

()2
,

1

if 0 then j candidate max testn nθΔ > ←

 (3.2)

 41

 After maxn has been determined according to (3.2) using the angle information from

bus j, the observed angle change vector is then constructed using the maxn samples

from all of the candidate signals:

[]
[]

[]

1,

2,

,

candidate max

candidate max
observed

K candidate max

n
n

n

θ
θ

θ

⎡ ⎤Δ
⎢ ⎥Δ⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥
Δ⎢ ⎥⎣ ⎦

θ
#

 (3.3)

A key assumption is needed for (3.3) to truly represent the change in steady state

angles at all buses—namely, that the maxn value obtained from the measurements at

bus j corresponds to the steady state changes at the other buses. This assumption will

be correct if there is a constant delay in the transition from the old to new steady-state

angles at each bus in the system (i.e., the DS and RS values are the same for the angle

signal at each bus). For coherent systems, such as regional networks, this is likely to

be the case. For large interconnected systems, different buses may reach their steady-

state value at a later or earlier time than the first signal to cross the thresholdτ . If this

behavior is expected, (3.2) can be run independently for each measurement as it

passes the threshold, in which case the maxn value used in (3.3) would potentially be

different for each bus.

 42

3.1.2 Parameter selection

3.1.2.1 Transition samples (transN)

Figure 3.3: Illustration of the relationship between transN and observedθΔ .

There are two key parameters involved in both the event detection and angle

change vector determination as formulated in the previous section: transN and τ . The

first parameter, transN , is the number of samples over which the difference in angle

measurements is taken. Figure 3.3 illustrates how different values of transN impact the

accuracy and delay in determination of observedθΔ . The value ()1
transN represents the

case where transN is lower than the number of samples over which the transition

occurs. The resulting observedθΔ underestimates the true change in angles, actualθΔ .

The second value shown, ()2
transN , represents the case where transN is optimal and

 43

observedθΔ is equal to actualθΔ . The third value, ()3
transN , represents the case where

transN is larger than the number of samples needed to transition between states; in this

case, it takes longer for the candidateθΔ signal to decrease below actualθΔ . The result

of this delay is that the while loop condition in (3.2) will take longer to become false,

thereby delaying the detection of the event.

Based on the results shown in Figure 3.3, upper and lower bounds on transN can

be described. The lower bound on transN is based on the need for the entire transition

region to fit inside transN samples (otherwise the resulting observedθΔ signal will

underestimate the true difference in steady state angle values as with ()1
transN). A new

quantity is defined to measure how well a given value of transN contains the transition

band :

 miss observed actualθ θ θΔ = Δ − Δ (3.4)

Because RS provides a measure of the number of samples in the transition from the

pre- to postevent angles, RS can be considered a lower bound for transN when using a

particular filter. An upper bound on transN is more difficult to quantify; however,

choosing too large of a value for transN could result in misidentification of the pre-

event steady state angle and will delay the number of samples before the while loop in

(3.2) is exited. To measure this last effect, a new quantity is defined, whilen ,

representing the number of samples spent inside of the while loop of (3.2). The

longer the algorithm spends in the while loop, the longer it takes for the event to be

detected; as a result, minimizing whilen is essential for obtaining timely event

information. The optimal transN can then be described as the value which minimizes

 44

missθΔ and whilen . Referring back to Figure 3.3, ()1
transN is a poor choice because it

results in large missθΔ and whilen values, ()3
transN is a poor choice because it results in a

large whilen value, and ()2
transN is the best choice because it minimizes both missθΔ and

whilen .

Figure 3.4: Simulated PMU angle signal used to evaluate edge detection parameters.

To examine the effects of transN on a PMU angle signal, the algorithm defined in

(3.2) was run on the simulated PMU angle signal shown in Figure 3.4, with the

threshold τ set to 0.57 degrees (the maximum error bound from the IEEE PMU

standard [27]). Because of the different behavior of FIR and median filtering,

particularly with respect to RS, both filter types were evaluated, with filter lengths

ranging from 1 to 99 samples.

 45

Figure 3.5: Δθmiss and nwhile values using 61-order FIR and median filtering as Ntrans
values range from 1 to 500 samples.

Figure 3.5 shows the missθΔ and whilen values using FIR and median filters of

length 61 as transN values range from 1 to 500 samples. The median filter is able to

minimize missθΔ with shorter values of whilen ; this is due primarily to conservation of

the step change after the median filter is applied and is directly related to the lower RS

values associated with median filtering as described in the previous chapter. On the

other hand, the FIR filter results in a better missθΔ value as transN gets very large

(0.0237 degrees vs. 0.0336 degrees); this indicates that FIR filtering, for a given filter

length, is slightly better at filtering out the oscillations present in the original signal.

This result corresponds to the reduced PO values associated with FIR filtering, as

discussed in the previous chapter. Therefore, the choice of using an FIR or median

 46

filter is a tradeoff between minimizing missθΔ (for which FIR filtering is best) and

whilen (for which median filtering is best). Similarly, the choice of transN is also a

tradeoff between accuracy and delay—a larger value of transN tends to increase the

value of whilen while reducing the value of missθΔ .

In Figure 3.5, the whilen values level off after transN exceeds a certain value for

filter lengths of 61. This is because the filters are not able to completely eliminate the

overshoot in the original signal; as a result, the problem illustrated with ()3
transN in

Figure 3.3 does not occur. In contrast, Figure 3.6 shows that using a much higher

order filter (in this case, with a length of 147) results in enough attenuation that the

case illustrated by ()3
transN does occur for FIR filtering. This phenomenon does not

occur using median filtering because of the discontinuities present in the final signal

as shown in Figure 3.7.

Figure 3.6: nwhile values using a filter length of 147 FIR and median filtering as Ntrans
values range from 1 to 250 samples.

 47

Figure 3.7: Filtering signals obtained using FIR and median filtering of length 147.

3.1.2.2 Difference threshold (τ)

The threshold value τ must also be chosen with care, because setting the

threshold value too high might result in missing events that only result in small angle

changes (e.g., outages of lines with low pre-outage flow), whereas choosing a

threshold value which is too low could result in misclassification of noise as an event.

Because the IEEE standard governing PMU behavior [27] requires angle

measurements to be accurate within 0.57 degrees of the true angle value, this can

serve as a useful upper bound on the threshold value. A useful lower bound on τ is

more difficult to specify, primarily due to the lack of documentation detailing the

performance of PMUs from different manufacturers. One lower bound is the

accuracy of the GPS timing signals, approximately 0.5 μs, which translates to a 0.01-

degree phase error [27]. In addition, a study of PMUs manufactured by Schweitzer

Engineering Laboratories indicates that they are accurate to within 0.01 degrees [63]

for a nominal system signal. The ultimate choice of τ must balance the occurrence

of false positives (setting τ too low and incorrectly triggering on nonevents) with

false negatives (setting τ too high and neglecting to trigger on events). In addition,

usage of filtering to attenuate noise allows for a lower τ without increases in false

 48

positives; therefore, there is a tradeoff between the lower bound on τ and the filter

length. This can also be considered as a tradeoff between delay and event

misclassification, where increasing delay results in less misclassification.

3.2 Single-Line Outage Detection

3.2.1 Analytical basis for single-line outage detection

When E is restricted to a set of single line outages on the system, then the

problem defined in (1.3) becomes

{ }

()()
*

1,2,...,

line outaged

arg min min
l

observed l lPl L

l

deltaAngles P
∈

=

Δ −θ
 (3.5)

where L is the number of lines in service before the event is detected and

()l ldeltaAngles P is a function which returns the estimated change in angles for the

outage of line l with a pre-outage flow of lP . Because lP is unknown a priori, it is

allowed to vary in order to achieve the best match in observed and calculated angles.

Therefore, a unique solution of (3.5) requires that each line outage be distinguishable

from the outage of other lines regardless of the pre-outage flow on each line. Solution

of (3.5) requires the ability to relate the pre-outage flow on a line l to the observed

angle changes on that line if it were to be outaged (represented by ()l ldeltaAngles P).

A simple expression for ()l ldeltaAngles P is obtained if the dc power flow equations

(1.1) are used. When the dc power flow equations are used, the effect of the outage of

a line l can be approximated by a power transfer between the line’s “from” bus lfrom

and its “to” bus lto [65]. The transfer amount lP� can be determined from the

following equation:

 49

,1

from to

l
l

l l l

PP
PTDF −

=
−

� (3.6)

where lP is the pre-outage flow on line l defined as positive if flowing from lfrom to lto.

The value , from tol l lPTDF − is the power transfer distribution factor (PTDF) relating the

change in flow on line l due to a transfer from bus froml to bus tol and can be

calculated using only topology and impedance information if the dc power flow

assumptions are used [65]. If the denominator is zero (i.e., , 1
from tol l lPTDF − =), this

indicates that the line constitutes a radial connection between two otherwise

disconnected systems and the outage cannot be represented as a transfer across the

line. In this case, the changes in generator dispatch in the disconnected systems must

be modeled to capture the line outage. Section 3.3 below proposes methods for

modeling generation redispatch.

If the power transfer lP� is imposed on the system, then a change in angles occurs

at all buses. To distinguish the observable angles from the complete set of angles at

all buses, a K N× matrix K is introduced:

 ()K K K N K× × −
⎡ ⎤= ⎣ ⎦K I 0 (3.7)

where K is the number of phasor angles observable from the PMUs, N is the total

number of system buses, K K×I is the K K× identity matrix, and ()K N K× −0 is a

()K N K× − matrix of zeros. The set of angle changes at the observable buses, which

is denoted as ,
lP

calc lΔθ � , is then found by applying Equation (1.1):

 50

1
,

1

,

0

0

0
1
1

0

l l fromP
calc l

l to

from
l

to

l calc l

P l
P l

l
P

l

P

−

−

⎡ ⎤
⎢ ⎥←⎢ ⎥=
⎢ ⎥− ←
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥←⎢ ⎥=
⎢ ⎥− ←
⎢ ⎥
⎣ ⎦

=

Δθ KB

KB

Δθ

� �
�

�

��

 (3.8)

As shown in (3.8), the changes in angles are linear with respect to lP� ; therefore,

the calculated changes in angles for a particular pre-outage flow on line l can be

written as a scalar lP� multiplying a constant vector ,calc lΔθ� . In turn, (3.5) can be

rewritten with ()l ldeltaAngles P replaced by the appropriate scalar-vector product:

{ }

()
*

,
1,2,...,

line outaged

arg min min
l

observed l calc lPl L

l

P
∈

=

Δ −θ Δθ
�

�� (3.9)

The optimization given in (3.9) can be performed very quickly using dot

products. To see why this is the case, first consider two arbitrary vectors a and b.

From linear algebra, it is known that the projection of b onto a, projab , is the vector

that minimizes b - ka, where k is allowed to take on any value [66]. The formula for

calculating projab is

*

*

arg min
k

k k

proj k

⋅
= = −

⋅
=a

a b b a
a a

b a
 (3.10)

Comparing Equations (3.9) and (3.10), the inner minimization of (3.9) can be

rewritten as

 51

,*

, ,

*
, ,min

l

observed calc l
l

calc l calc l

observed l calc l observed l calc lP

P

P P

Δ ⋅
=

⋅

Δ − = Δ −

θ Δθ
Δθ Δθ

θ Δθ θ Δθ
�

�
�

� �

� �� �
 (3.11)

The inner minimization can then be eliminated and the complete minimization

rewritten using dot products:

{ }

*

,
,

1,2,..., , ,

line outaged

arg min observed calc l
observed calc l

l L calc l calc l

l

∈

=

⎛ ⎞⎛ ⎞Δ ⋅
⎜ ⎟Δ − ⎜ ⎟⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

θ Δθ
θ Δθ

Δθ Δθ

�
�

� �
 (3.12)

Some manipulation of (3.12) can provide additional intuition into the nature of the

minimization process. Consider first the expansion of the norm into dot products:

{ }

{ }

()

()

,
,

1,2,..., , ,

,
,

1,2,..., , ,

arg min

arg min 2

observed calc l
observed calc l

l L calc l calc l

observed observed

observed calc l
observed calc l

l L calc l calc l

∈

∈

Δ ⋅
Δ − =

⋅

Δ ⋅Δ

Δ ⋅
− Δ ⋅

⋅

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

θ Δθ
θ Δθ

Δθ Δθ

θ θ

θ Δθ
θ Δθ

Δθ Δθ

Δθ

�
�

� �

�
�

� �

�()

{ }

()

()

2

,
, ,

, ,

2

,

, ,

21,2,...,
,

, ,

arg min

2

observed calc l
calc l calc l

calc l calc l

observed calc l

calc l calc l

l L
observed calc l

calc l calc l

∈

Δ ⋅
⋅

⋅

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞Δ ⋅⎜ ⎟
⎜ ⎟⋅
⎜ ⎟
⎜ ⎟Δ ⋅
⎜ ⎟−⎜ ⎟⋅⎝ ⎠

θ Δθ
Δθ

Δθ Δθ

θ Δθ

Δθ Δθ

θ Δθ

Δθ Δθ

�
�

� �

�

� �

�

� �

{ }

()

{ }

,

1,2,..., , ,

2

,

1,2,..., , ,

arg max

arg min

calc lobserved

l L observed observed calc l calc l

observed calc l

l L calc l calc l

∈

∈

Δ
⋅

Δ ⋅Δ ⋅

=

⎛ ⎞− Δ ⋅⎜ ⎟ =
⎜ ⎟⋅⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

Δθθ
θ θ Δθ Δθ

θ Δθ

Δθ Δθ

�
� �

�

� �
 (3.13)

The last expression indicates that the minimization of (3.12) is equivalent to the

maximization of the dot product between the normalized observedΔθ and ,calc lΔθ�

 52

vectors. Furthermore, maximization of the dot product is equivalent to minimization

of the inverse cosine:

{ }

{ }

,

1,2,..., , ,

,1

1,2,..., , ,

arg max

arg min cos

calc lobserved

l L observed observed calc l calc l

calc lobserved

l L observed observed calc l calc l

∈

−

∈

⎛ ⎞⎛ ⎞⎛ ⎞Δ⎜ ⎟⋅ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟Δ ⋅Δ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎛ ⎞⎛ ⎞Δ⎜ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ Δ ⋅Δ ⋅⎝ ⎠ ⎝ ⎠⎝

Δθθ
θ θ Δθ Δθ

Δθθ
θ θ Δθ Δθ

�
� �

�
� �

⎞
⎟
⎟
⎠

 (3.14)

This last expression indicates that the line outage which best matches the observed

angle changes is the one which has a ,calc lΔθ� vector that matches the direction of the

observedΔθ vector. A normalized angle distance (NAD) metric is defined to quantify the

difference in the direction between the observed and expected angle changes for each

line:

,1

, ,

cos

2
2sin

calc lobserved

observed observed calc l calc l
l

l lNAD

θ

θ

− ⎛ ⎞⎛ ⎞Δ
⋅⎜ ⎟⎜ ⎟ ⎜ ⎟Δ ⋅Δ ⋅⎝ ⎠ ⎝ ⎠=

=

Δθθ
θ θ Δθ Δθ

�
� �

 (3.15)

As shown in Figure 3.8, an NAD value of 0 would correspond to a perfect match

between the expected and observed angle changes and the maximum NAD value of

2 would correspond to the worst possible match (where observedΔθ and ,calc lΔθ� are

perpendicular).

Figure 3.8: Normalized angle difference (NAD) metric.

 53

3.2.2 Basic single-line outage event detection algorithm

In order to detect a line outage, identify the outaged line, and determine the pre-

outage flow on that line, the following basic algorithm is used:

1. For each line l:

a. Calculate ,calc lΔθ� using (3.8).

b. Calculate *
lP� using (3.11).

c. Calculate the NAD value for line l using (3.15), then store the

calculated error value in the indexed array NADVals:

 l lNADVals NAD= (3.16)

2. Determine the line *l that was outaged by sorting NADVals:

 * arg min l
l

l NADVals= (3.17)

3. Determine the pre-outage flow on the line which best fits the observed angle,

*
*

l
P , using (3.6):

 ()* * * * *
* *

,
1

from tol l l l l
P P PTDF

−
= −� (3.18)

3.2.3 Computational complexity

To calculate the angle change due to the outage of a line l using (3.8), the B

matrix must be factored using LU decomposition [67]. This is the most expensive

operation in the algorithm, but it only needs to be performed once per change in

topology. Once B is factored, ,calc lΔθ� and the necessary PTDF values can be

computed using forward and backward substitution. In addition, because only certain

elements of the angle vector are needed, fast-forward and fast-backward solution can

be used to reduce computation time. Outside of step 1.a, the algorithm requires only

 54

addition and dot products with vectors of dimension K and a sort operation. These

last operations are highly parallelizable and would see performance gains on the order

of the number of computing cores available.

3.2.4 Heuristic modifications to the basic algorithm

Additional information is available about the power system, and this information

can be exploited to reduce the search space and improve the performance of the line

outage detection algorithm. One useful modification is to reject potential outages

requiring excessive pre-outage flow on the line in question. For the studies presented

below, this was set to either 150% of the line rating in MVA or 5 GW in cases where

the rating was unavailable. In addition, system experts may be capable of evaluating

potential outages for their feasibility; to facilitate evaluation by operators, the

algorithm can easily output the top outage candidates, along with estimated pre-

outage flows.

3.3 Generator Outage Detection

3.3.1 Analytical basis for generator outage detection

As with single-line outages, the basic event detection formulation from (1.3) is

first restricted to the set of generator outages:

{ }

()()
*

1,2,...,

generator outaged

arg min min
l

observed g gPg G

g

deltaAngles P
∈

=

Δ −θ
 (3.19)

In (3.19), ()g gdeltaAngles P represents the expected changes in observed angles due

to the outage of generator g which, before the outage, is generating Pg. As with the

 55

single-line outage detection, the dc power flow equations are used to derive an

expression for ()g gdeltaAngles P .

Unlike in the line outage case, there are nonzero changes to power injections on

the system upon the outage of a generator. In typical power flow studies, the pickup

of the remaining generators is modeled in a variety of ways. One common method is

through the designation of a slack bus which, upon the outage of a generator on the

system, will pick up the “slack” left by the outaged generator. In this case, the power

injection vector would have only one nonzero entry at the row corresponding to the

outaged generator. This method is the easiest way to account for changes in

generation, but it does not factor in the characteristics of the system’s generators.

In real system operations, a loss in generation is usually picked up by a

combination of the remaining generators rather than just one. Usage of participation

factors attempts to capture this behavior. In this method, the entry for each generator

bus in the power injection vector is determined based on the participation factor (pf)

of the corresponding generating unit, i.e. :

{ }

1

2

1,2,..., \

row corresponding to
outaged generator

1

g

g

g

G g

i
i G g

pf P
pf P

P
P

pf P

pf
∈

×⎡ ⎤
⎢ ⎥×⎢ ⎥
⎢ ⎥

Δ = ⎢ ⎥− ←⎢ ⎥
⎢ ⎥
⎢ ⎥

×⎢ ⎥⎣ ⎦
=∑

#

#
 (3.20)

The summation in (3.20) ensures that all generation lost by the outaged unit g is

picked up by the remaining units. The assumption implicit in having the participation

factors sum to one is that changes in losses on the system are negligible; if this is not

 56

the case, then the right-hand side of the equality can be modified to reflect the

expected changes in losses.

While the formulation in (3.20) is much more flexible than the slack bus

approach, the validity of (3.20) is dependent on the accuracy of the participation

factors used. These factors are commonly used in contingency analyses and are, as a

result, available on an area-wide basis for many control areas; however, a systemwide

database of participation factors is unavailable. Nonetheless, participation factors can

be estimated based on the characteristics of each generator [68] which are available

from systemwide dynamic models. For short term redispatch of generation, one of

the key determining factors is each generator’s droop and machine base. Droop,

otherwise known as speed regulation, is defined as follows [68]:

no load full load

nominal no load full load
max

nominal
max

decrease in frequency
nominal system frequency

100%
increase in power output
maximum power output

100% 10
0

R

f f
f f f

fP
P

⎛ ⎞
⎜ ⎟
⎝ ⎠= ×
⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞−
⎜ ⎟ ⎛ ⎞−⎝ ⎠= × = ×⎜ ⎟⎛ ⎞− ⎝ ⎠

⎜ ⎟
⎝ ⎠

0%

 (3.21)

The subscripted f quantities refer to electrical frequency at various operating

conditions (no load, full load, and nominal system frequency), and maxP refers to the

maximum power output of the generator, which is assumed to be the same as the

machine base. For example, if the droop of a generator is 1%, then a 1% deviation in

frequency (normalized to system frequency) results in a 100% change in power output

of the unit. Figure 3.9 provides an illustration of droop for a single generator.

 57

Figure 3.9: Illustration of droop characteristics.

Whenever there is a frequency change on the system, this frequency change will

propagate throughout the electrical network and affect the output of each generator

which is still connected to the system based on droop settings. If each generator i

that is connected to the system has a droop value of iR and maximum power output of

max
iP , the following relations must hold:

 1 2
1 2max max max

1 2 nominal

G
G

G

PP P fR R R
P P P f

ΔΔ Δ Δ
= = = =" (3.22)

after the new system frequency has been reached. The change in frequencies, fΔ , is

measured at each PMU and is provided in the PMU data set; however, a priori

knowledge of which generators are connected to the system is required to determine

iPΔ via (3.22). To calculate iPΔ if generator g has lost connectivity, (3.20) and (3.22)

can be combined:

 58

{ }

'
max

' '
1 1

' ' ' '
1 1 1 1 1 1

1,2,..., \
1

i
i

i

g G G g

g g g g G G

i
i G g

RR
P

R pf P R pf P

R pf R pf R pf R pf

pf
− − + +

∈

=

× × = = × ×

× = = × = × = = ×

=∑

"

" "
 (3.23)

This set of equations is solvable for the participation factors using the following set of

linear equations:

' '
11 2

' '
22 3

' '
11

00 0
00 0 0
00 0 0

0 0
00 0
11 1 1

where

GG G

G

i i g

pfR R
pfR R

pfR R
pf

P pf P

−−

⎡ ⎤− ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
Δ = ×

" "
"

#% % #
" % %

" "
" " "

 (3.24)

The participation factors obtained via (3.24) can then be used with (1.1), (3.7), and

(3.20) to estimate the changes in angles for the outage of generator g providing pre-

outage power gP :

1

1
1

,

1

1

1
1

1

,

1

g

g

g g
P

gcalc g

g g

G g

g

g

g

G

g calc g

pf P

pf P
P

pf P

pf P

pf

pf
P

pf

pf

P

−
−

+

−
−

+

×⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥×
⎢ ⎥−Δ = ⎢ ⎥
⎢ ⎥×
⎢ ⎥
⎢ ⎥
⎢ ⎥×⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= Δ

θ KB

KB

θ

#

#

#

#

 (3.25)

 59

As with the single-line outage events, the expected changes in angles due to a

generator outage can be represented as a scalar-vector multiplication. As a result,

similar analysis provides the optimizing gP value for a given observed change in

angles:

,*

, ,

*
, ,min

g

observed calc g
g

calc g calc g

observed g calc g observed g calc gP

P

P P

Δ ⋅
=

⋅

Δ − = Δ −

θ Δθ
Δθ Δθ

θ Δθ θ Δθ
 (3.26)

In addition, an NAD value can also be defined for generator outages:

,1

, ,

cos

2
2sin

calc gobserved

observed observed calc g calc g
g

g gNAD

θ

θ

−
⎛ ⎞⎛ ⎞Δ
⋅⎜ ⎟⎜ ⎟ ⎜ ⎟Δ ⋅Δ ⋅⎝ ⎠ ⎝ ⎠=

=

Δθθ
θ θ Δθ Δθ (3.27)

3.3.2 Verification of droop-based participation factors

To verify the usefulness of droop-based participation factors, generator outages

were run for each of the nine generators within the system described in 0. Each

generator uses an IEEEG1 model [69] with GK set to 20 (i.e, droop set to 5%).

Using these values, the differences between the participation factors estimated from

Equation (3.24) and calculated from dynamic simulation were calculated for each

outage at each sample time t, where t = 0 corresponds to the time of the outage event:

 60

() ()
() ()

{ }

() ()
()

()
()

simulated

simulated simulated
total

1, ,

simulated simulated
1

simulated simulated simulated
total total

estimate

1 , outaged gen
0 , outaged gen

 simulated

i

i i i

i
i G

T

G

i

i
i

P t P t

P t P t

P t P t
t

P t P t

pf

=

≠⎧
Ω = ⎨ =⎩

Δ = Ω ×Δ

Δ = Δ

⎡ ⎤Δ Δ
= ⎢ ⎥Δ Δ⎣ ⎦
= Ω

∑

pf

…

"

() ()
()

estimate estimate
estimate 1

simulated estimate

simulated

, estimated participation
factor using equation 4.21

100%

i i

T

G

pf

pf pf

t
PFD t

t

×

⎡ ⎤= ⎣ ⎦
−

= ×

pf

pf pf
pf

"

 (3.28)

The droop-based participation factors require the change in frequency seen by

each generator to be the same. To quantify how well the frequencies on the system

match this condition, a frequency deviation quantity is defined:

() { }
()

{ }

() () ()()

()
()

()

1, ,

1, ,

,

,1

,

g g
g G

avg
g

g G

dev g g g avg

dev

diff

dev G

f t
f t

f t f t f t

f t
f t

f t

∈

∈

∑ Ω Δ
=

∑ Ω

= Ω Δ −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

#

 (3.29)

where gfΔ is the change in frequency from the pre-outage frequency at the bus

generator g is connected to. Figure 3.10 shows that the frequency difference between

the generators takes between 10 and 20 s to reach zero, which implies that the

condition given in (3.22) will only be reached 10 to 20 s after the outage occurs.

 61

Figure 3.10: Evolution of frequency difference fdiff over time for each generator
outage.

The PFD values, which reflect the deviation between the participation factors

based on droop and the true participation factors, reach zero several seconds after the

frequency deviations reach zero. If the droop response were instantaneous, then PFD

would decay along with difff ; however, because there are delays in regulation due to

machine inertia and governor delay, there is a lag of several seconds between the

frequency deviations going to zero and the PFD value going to zero. Comparing

Figures 3.10 and 3.11, it is clear that regulation delay results in the PFD values for

each outage reaching a minimum several seconds after the difff value reaches zero.

 62

Figure 3.11: Evolution of PFD values over time for each generator outage.

The PFD values for each generator outage are provided in Table 3.1 using

frequency and power output values 20 s after the outage event (i.e., at the rightmost

point in Figure 3.11). The results shown in Table 3.1 are promising in that they

indicate droop-based participation factors can provide a very close approximation

(<2% error) to the true participation factors.

Table 3.1: Accuracy of droop-based participation factors using model parameters
Generator

Outaged
WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69

PFD 1.60% 1.67% 1.48% 1.72% 1.60% 1.59% 1.56% 1.00%

For each generator outage, the actual droop can be determined using (3.21) based

on the change in frequency and power output at each generator. The mean and

standard deviation (taken over the set of nine generator outages) in the simulated

droop values for each of the generators are provided in Table 3.2. Although the

values are different than the 5% value specified in the generator governor models, the

 63

low standard deviation indicates that determining droop values through offline

simulation is a viable means of correctly assessing the droop. Using the droop values

in Table 3.2 instead of the 5% value specified in the governor models, the PFD values

after 20 s were evaluated again.

Table 3.2: Droop means and standard deviations determined from simulation
Generator: WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69

Droop mean 4.93% 4.81% 4.91% 4.84% 4.94% 4.91% 4.81% 4.64%

Droop st. dev. 0.02% 0.02% 0.01% 0.01% 0.01% 0.02% 0.01% 0.01%

The PFD determined using the droop values of Table 3.2 are provided in Table

3.3. The usage of the droop values from Table 3.2 provides a more accurate

representation of the generator response, as evidenced by the decrease in the PFD

values for each of the generator outages.

Table 3.3: Accuracy of droop-based participation factors using Table 3.2 droop values
Generator

Outaged
WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69

PFD 0.36% 0.06% 0.08% 0.07% 0.13% 0.06% 0.13% 0.10%

Additional tests were run with the droop value for the generator at bus WEBER69

set to 10% rather than 5% to test the sensitivity of this method with respect to

individual generator droop settings. Table 3.4 provides the droop means and standard

deviations determined from simulation. The droop values for all buses except for

WEBER69 stay the same as in Table 3.2, while the WEBER69 droop is

approximately 10% as specified in the model of the governor at this generator.

Table 3.4: Droop means and standard deviations determined from simulation, with
WEBER69 droop set to 10% instead of 5%

Generator: WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69

Droop mean 9.74% 4.81% 4.91% 4.84% 4.94% 4.91% 4.81% 4.64%

Droop st. dev. 0.06% 0.02% 0.01% 0.01% 0.01% 0.02% 0.02% 0.01%

 64

Using the droop values in Table 3.4, participation factors were calculated using

(3.24) and the PFD values given in Table 3.5 were determined 20 s after the outage.

These low error values demonstrate that droop-based participation factors are

effective in modeling generator response independently of the droop value, as long as

sufficient time is allowed for the generators to reach the operating points specified by

their respective droop settings.

Table 3.5: : Accuracy of droop-based participation factors using Table 3.4 droop
values, with WEBER69 droop set to 10% instead of 5%

Generator
Outaged

WEBER69 JO345 SLACK345 LAUF69 BOB69 ROGER69 BLT138 BLT69

PFD 0.39% 0.07% 0.13% 0.05% 0.14% 0.05% 0.14% 0.11%

3.3.3 Basic generator outage detection algorithm

Because the expected angle changes for a single-line outage and a generator

outage can both be expressed as scalar-vector multiplications, the algorithms are very

similar:

1. For each generator g:

a. Calculate ,calc gΔθ using (3.25).

b. Calculate *
gP using (3.26).

c. Calculate the NAD value for generator g using (3.27), then store the

calculated error value in the indexed array NADVals:

 g gNADVals NAD= (3.30)

2. Determine the generator *g that was outaged by sorting NADVals:

 * arg min g
g

g NADVals= (3.31)

3. Report back the estimated pre-outage generation *
*

g
P calculated in step 1.b.

 65

3.3.4 Computational complexity

Although the methods used to determine the most likely single line outage and

generator outage events are very similar, there are two key differences. The first

difference is in the density of the PΔ vector used to calculate ,calc gΔθ . In the single-

line outage case, the PΔ vector has only two nonzero entries corresponding to the

from and to buses of the outaged line. With generator outages, the PΔ vector will

have nonzero entries at each bus with an online generator attached. This is typically a

small subset of the total number of system buses, but may result in increased

computation time.

The second key difference is that there are fewer generators than lines within a

power system, so the number of events is drastically reduced. This reduction in

events causes fewer calculations of calcΔθ and NAD values and a faster sort

operation in determining the most likely generator outage.

3.3.5 Heuristic modifications to the basic algorithm

By taking advantage of known generator ratings, it is possible to further restrict

the event set. The way this is handled in the algorithm is to remove generators from

consideration if the estimated pre-outage generation is greater than 1.5 times the

rating of the generation. The extra 50% leeway allows for possible errors introduced

by the dc power flow assumptions, participation factor selection, and errors in

determining observedθΔ .

 66

3.4 Double-Line Outage Detection

3.4.1 Analytical basis for double-line outage detection

When E is restricted to the set of double-line outages on the system, then the

problem defined in (1.3) becomes

{ }

{ } { } { }
()

1 2
,1 ,21 2

* *
1 2

, ,1 ,2,, 1,2,..., 1,2,...,

lines outaged ,

arg min min ,
l l

observed l l l lP Pl l L L

l l

deltaAngles P P
∈ ×

=

⎛ ⎞Δ −⎜ ⎟
⎝ ⎠

θ
 (3.32)

where L is the number of lines in service before the event is detected and

()
1 2, ,1 ,2,l l l ldeltaAngles P P is a function which returns the estimated change in angles for

the outages of lines 1l and 2l with pre-outage flows of ,1lP and ,2lP , respectively.

Because the pre-outage flows are unknown a priori, each is allowed to vary in order to

achieve the best match in observed and calculated angles.

To characterize the function ()
1 2, ,1 ,2,l l l ldeltaAngles P P under the dc power flow

assumptions, the outages are modeled by power injections at the terminal buses of the

outaged lines. Figure 3.12 illustrates the relevant quantities used to model a double-

line outage. Based on the flows and injections shown in Figure 3.12, the following

two equalities must hold for the flow from the rest of the system to the outaged lines,

1F and 2F , to be zero:

1 1, 1,

1 2, 2,

2 1, 1,

2 2, 2,

,1 , ,1

, ,2,1

,2 ,2 , ,1

, ,2

from to

from to

from to

from to

l l l l l

l l l ll

l l l l l l

l l l l

P PTDF P

PTDF PP

P P PTDF P

PTDF P

−

−

−

−

⎡ ⎤⎛ ⎞+ × +⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎡ ⎤ ×⎢ ⎥⎝ ⎠⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎛ ⎞⎢ ⎥+ × +⎣ ⎦ ⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟×⎝ ⎠⎣ ⎦

��

����
� �� �

��

 (3.33)

 67

Figure 3.12: Double-line outage model with power injections.

Rewriting this in matrix form, an expression for ,1lP�� and ,2lP�� in terms of PTDFs and

pre-outage line flows can be obtained:

 1 1, 1, 1 2, 2,

2 1, 1, 2 2, 2,

1
, ,,1 ,1

,2, ,,2

1

1
from to from to

from to from to

l l l l l ll l

ll l l l l ll

PTDF PTDFP P
PPTDF PTDFP

−
− −

− −

⎡ ⎤ − −⎡ ⎤ ⎡ ⎤⎢ ⎥ = ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

��
��

 (3.34)

The inverse matrix in (3.34) exists only if the outage of the two lines does not result in

islanding [70]. If the lines do result in islanding of the system, then the outages

cannot be modeled as transfers across the lines and must instead be modeled as

 68

changes in power injection at the boundary buses of the original system, taking into

account any necessary redispatch of generation as discussed in Section 3.3.1.

Using the formula for the inverse of a 2 x 2 matrix, the solution in (3.34) can be

rewritten:

()()
()()

1 1, 1, 2 2, 2,

2 1, 1, 1 2, 2,

2 2, 2, 1 2, 2,

2 1, 1, 1 1, 1,

1,2 , ,

, ,

, ,,1

, ,1,2,2

1 1

11
1

from to from to

from to from to

from to from to

from to from to

l l l l l l

l l l l l l

l l l l l ll

l l l l l ll

PTDF PTDF

PTDF PTDF

PTDF PTDFP
PTDF PTDFP

α

α

− −

− −

− −

− −

= − − −

⎡ ⎤ −
⎢ ⎥ =

−⎢ ⎥
⎣ ⎦

��
��

2 2, 2, 1 2, 2,

2 1, 1, 1 1, 1,

,1

,2

, ,,1 ,1 ,2

, ,1,2 1,2,2

1

1
from to from to

from to from to

l

l

l l l l l ll l l

l l l l l ll

P
P

PTDF PTDFP P P
PTDF PTDFP α α

− −

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ = +⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

��
��

 (3.35)

Once the double outage model injection vectors, ,1lP�� and ,2lP�� , are obtained, the

resulting change in angles can then be determined:

,1 ,2

1 2

, ,1 ,1 ,2 ,21
, ,

,1 ,2,1 ,2

,11
,1

,1

1
,2

0 0

0 0

0
1
1

0

0
1

l lP P l from l from
calc l l

to tol l

from
l

to

l

P l P l
l lP P

l
P

l

P

θ −

−

−

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ← ← ⎟⎢ ⎥ ⎢ ⎥

Δ = +⎜ ⎟⎢ ⎥ ⎢ ⎥← ←− −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥←⎜ ⎟⎢ ⎥= +⎜ ⎟⎢ ⎥− ←
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

KB

KB

KB

� �� �
� �� �
� �� �

��

��

1 2

,2

,2

,1 , ,2 ,

1
0

from

to

l calc l l calc l

l
l

P P

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥←⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥− ←
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

= +Δθ Δθ� �� �� �

 (3.36)

Note that the ,calc lΔθ� vectors in (3.36) are the same vectors defined in (3.8) for single-

line outage modeling. The optimization of (3.32) can then be rewritten in terms of the

vectors defined in (3.36):

 69

{ }

{ } { } { }
()1 2

,1 ,21 2

* *
1 2

,1 , ,2 ,
,, 1,2,..., 1,2,...,

lines outaged ,

arg min min
l l

observed l calc l l calc l
P Pl l L L

l l

P P
∈ ×

=

⎛ ⎞Δ − +⎜ ⎟
⎝ ⎠

θ Δθ Δθ
� �� �

� �� �� �
 (3.37)

If
1,calc lΔθ� =

2,calc lΔθ� , which occurs if line 1l and 2l are in parallel, then it is possible to

easily determine the values of ,1lP�� and ,2lP�� which result in the best match with

observedΔθ . In this case, the following one-dimensional minimization is performed:

1,2 1 2

1,2 1,2
,1,2

1,2

1,2 1,2

, , ,

*
,1,2 , ,1,2 ,

,*
,1,2

, ,

min
l

calc l calc l calc l

observed l calc l observed l calc l
P

calc l observed
l

calc l calc l

P P

P

= =

Δ − = Δ −

⋅Δ
=

⋅

Δθ Δθ Δθ

θ Δθ θ Δθ

Δθ θ

Δθ Δθ

��

� � �

� �� �� �

���
� �

 (3.38)

Using the *
,1,2lP�� scaling factor, it is possible to determine the pre-outage flows on each

of the parallel lines:

 ()

1 1 1, 1,

2 2 2, 2,

1 2 1 1, 1, 2 2, 2,

1 1, 1,1 1

2 2 2 2, 2,

1

2

* *
,1,2 , ,1,2

*
, ,1,2

*
,1,2 , ,

,

,

1

from to

from to

from to from to

from to

from to

l l l l l l

l l l l l

l l l l l l l l l

l l ll l

l l l l l

l

l

P P PTDF P

P PTDF P

P P P PTDF PTDF

PTDFP B
P B PTDF

P

P

−

−

− −

−

−

= + × +

+ ×

+ = − −

= =

⎡

� �� �

��

��

() 1 1, 1,1 1, 1, 2 2, 2,

2 2, 2,1 1, 1, 1 1, 1,

,, ,*
,1,2

,, ,

1
from tofrom to from to

from tofrom to from to

l l ll l l l l l

l
l l ll l l l l l

PTDFPTDF PTDF
P

PTDFPTDF PTDF
−− −

−− −

− − ⎡ ⎤⎤
= ⎢ ⎥⎢ ⎥

+ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

��

 (3.39)

The last expression is based on the fact that the same angle difference exists across

both lines, so the flows must be in proportion to their reactances. Figure 3.13

provides a graphical depiction of the relevant quantities used to derive the equations

in (3.39) which model a parallel line outage with power injections.

 70

Figure 3.13: Modeling the outage of two parallel lines with a power transfer.

If the outage of the parallel lines results in island formation, then

()1 1, 1, 2 2, 2,, ,1
from to from tol l l l l lPTDF PTDF− −− − will be equal to zero and modeling of the double

line outage must account for changes in generation due to islanding.

For cases where the lines are not in parallel, the minimization in (3.37) can be

solved as a least squares minimization:

 71

()
()

1 2

,1 ,2

1 1

1 2

2

*
,1 ,1

, ,* ,
,2 ,2

1
*

, ,,1
, ,*

,2 ,

arg min
l l

l l
observed calc l calc l

P P
l l

T

calc l calc ll
calc l calc lT

l calc l

P P

P P

P

P

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= Δ − ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎛ ⎞⎡ ⎤⎡ ⎤ ⋅Δ⎜ ⎟⎢ ⎥⎢ ⎥ ⎡ ⎤= ⎜ ⎟⎣ ⎦⎢ ⎥⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎣ ⎦⎝ ⎠

θ Δθ Δθ

Δθ Δθ
Δθ Δθ

Δθ

� �� �

� �� �
� �

� �� �

� � ��
� �

�� �
2

1 1 1 2 1

1 2 2 2 2

1

,

1

, , , , ,

, , , , ,

2

,

1

observed

calc l observed

calc l calc l calc l calc l calc l observed

calc l calc l calc l calc l calc l observed

calc l c

−

⎡ ⎤
⎢ ⎥

⋅Δ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅Δ
= ⎢ ⎥ ⎢ ⎥

⋅ ⋅ ⋅Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

θ

Δθ θ

Δθ Δθ Δθ Δθ Δθ θ

Δθ Δθ Δθ Δθ Δθ θ

Δθ Δθ

�

� � � � �

� � � � �

� � ()2 1 2

2 1 2 1

2
1 2 1

22

, , ,

2

, , , ,

2
,, , ,

alc l calc l calc l

calc l calc l calc l calc l observed

calc l observedcalc l calc l calc l

×
− ⋅

⎡ ⎤− ⋅ ⎡ ⎤⋅Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅Δ⎢ ⎥− ⋅ ⎣ ⎦⎢ ⎥⎣ ⎦

Δθ Δθ

Δθ Δθ Δθ Δθ θ

Δθ θΔθ Δθ Δθ

� �

� � � �

�� � �

 (3.40)

Using the optimal injections defined in (3.40), the optimization of (3.37) can be

simplified further:

{ }

{ } { } { }
()1 2

1 2

* *
1 2

* *
,1 , ,2 ,

, 1,2,..., 1,2,...,

lines outaged ,

arg min observed l calc l l calc l
l l L L

l l

P P
∈ ×

=

⎛ ⎞Δ − +⎜ ⎟
⎝ ⎠

θ Δθ Δθ� �� �� � (3.41)

The normalized angle distance (NAD) metric can also be extended to double-line

outage events as follows:

()
()

1 2

1 2

1 2

1 2 1 2

* *
,1 , ,2 ,1

,
* *
,1 , ,2 ,

, ,

cos

2sin

l calc l l calc l
observed

l l
observed l calc l l calc l

l l l l

P P

P P

NAD

θ

θ

−

⎛ ⎞+⎜ ⎟Δ
= ⋅⎜ ⎟Δ +⎜ ⎟

⎝ ⎠
=

Δθ Δθθ
θ Δθ Δθ

� �� �� �

� �� �� � (3.42)

With the error metric properly defined, the algorithm can be defined for double-line

outage event detection, which closely aligns with those for single-line and generator

outage events.

 72

3.4.2 Basic double-line outage event definition algorithm

In order to detect double-line outage events, identify the outaged lines, and

determine the pre-outage flows on the lines, the following basic algorithm is used:

1. For each line []1 1,l L∈

a. Calculate
1,calc lΔθ� using (3.36).

b. For each line []2 1 1,l l L∈ +

i. Calculate
2,calc lΔθ� using (3.36).

ii. Calculate *
,1lP�� and *

,2lP�� using (3.40) for nonparallel lines or *
,1,2lP��

using (3.38) for parallel lines.

iii. Calculate the NAD value for the double outage { }1 2,l l using

(3.42), then store the calculated error value in the indexed array

NADVals:

 { } 1 21 2 ,, l ll lNADVals NAD= (3.43)

2. Determine the lines { }* *
1 2,l l that were outaged by sorting NADVals:

 { } { }1 2
1 2

* *
1 2 ,

,
, arg min l l

l l
l l NADVals= (3.44)

3. Determine the pre-outage flows on the lines which correspond to the optimal

double outage model injections using (or (3.39) for parallel lines):

 1 1, 1, 1 2, 2,

2 1, 1, 2 2, 2,

**
, , ,1,1

* *
,2 , , ,2

1

1
from to from to

from to from to

l l l l l l ll

l l l l l l l l

PTDF PTDF PP
P PTDF PTDF P

− −

− −

⎡ ⎤− −⎡ ⎤⎡ ⎤
⎢ ⎥= ⎢ ⎥⎢ ⎥ − − ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

��
��

 (3.45)

3.4.3 Computational complexity

The extension of events from single- to double-line outages can greatly increase

both storage and computational demands. The key difference between evaluating

 73

single- and double-line outages is the number of potential events. For single-line

outage events, only L events need to be considered, if L is the number of lines which

are currently in service. On the other hand, for double-line outages, the number of

considered events is
2
L⎛ ⎞

⎜ ⎟
⎝ ⎠

, or ()1 / 2L L −⎡ ⎤⎣ ⎦ . For a typical system, with lines

numbering in the tens of thousands, this can represent a tremendous increase in the

amount of work needed to find the minimizing event.

3.4.4 Heuristic modifications to the basic algorithm

There are several ways to reduce the dimensionality of the search space, with a

tradeoff between consideration of improbable events and reduction in storage and

computational burden. One method is to filter the event set to only include outages

with probability above a certain threshold Probthreshold :

 { }
{ } { } { } { }()

()
1 2 1 2

* *
1 2

, 1,2,..., 1,2,..., ,Prob , Prob
lines outaged , arg min

thresholdl l L L l l
l l

∈ × >
= " (3.46)

The probability data needed to execute the filtering in (3.46) should be based on

detailed modeling or operational data. Unfortunately, this data is currently

unavailable over the wide area; however, the need for this data to improve event

identification could serve as a motivating factor to improve the collection and

distribution of outage statistics.

A second way of filtering the event set is to account for the geographic proximity

of two lines on the system. Simultaneous line outages have a tendency to occur in

shared rights of way [71], and the wide availability of line locations makes this option

more feasible than (3.46). The basic formulation of this filtering method is

 74

 { }
{ } { } { } ()

()
1 2 1 2

* *
1 2

, 1,2,..., 1,2,..., , ,
lines outaged , arg min

thresholdl l L L d l l d
l l

∈ × <
= " (3.47)

where a distance function is defined between any two lines, ()1 2,d l l , and this distance

must be below a threshold value of thresholdd for the two lines to be considered

together. Because line locations rarely change at the transmission level, the

determination of ()1 2,d l l for each pairwise combination of lines can be stored and

used for long periods of time.

One simple but conservative distance metric that can be used for ()1 2,d l l is

()
()

()
()

() (){ }
() () () () ()1 1 2 2 1 1 2 2

all points , line ,

1 2
1 2

, arg min , max , ,

, , , , ,
, max

0

i i
i i

l l i i i i ix y ix y

l l l l l l l l
circ

x y R x y x y x y

x y x y R x y R x y
d l l

∈
= = −

⎧ ⎫− − −⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

(3.48)

A visualization of this distance function is provided in Figure 3.14. This formulation

provides a lower bound on the pointwise distance between any two points in either

line. The first equation in (3.48) represents the solution of the minimum enclosing

circle (MEC) problem, with the line vertices as the points to be enclosed. This is a

well-studied problem, and algorithms exist which can calculate (),
i il lx y and the

associated radius in ()O in time, where in is the number of vertex points for line i

[72]. Pairwise evaluation of these distances can be done very quickly once the

(),
i il lx y and iR values are known, with each distance calculation requiring only three

add and two multiply operations.

 75

Figure 3.14: Distance between two lines, as defined in (3.48).

An alternative method of defining the distance between two lines is to use the

minimum distance between any two points on the lines:

 ()
()
()

() ()
1 1
2 2

1 2 1 1 2 2all points , line 1,
all points , line 2

, min , ,min x y
x y

d l l x y x y
∈
∈

= − (3.49)

This distance function is illustrated in Figure 3.15. The relationship between mind and

circd is that circd is a lower bound on ()1 2,mind l l , since any point on a line must by

definition be within the MEC of the line. The relative magnitude of mind and circd

depends on the line configuration, but mind should be substantially higher since the

MEC tends to greatly enlarge the influence region of a line, particularly for long lines.

 76

Figure 3.15: Minimum distance between two lines, as defined in (3.49).

 These distances can be calculated offline and stored in a table for later retrieval.

Determining what the set of considered double line outages is for a given threshold is

then a matter of looking for all entries in the table below a threshold, which can be

greatly accelerated by utilizing sorted lists for storage. As a result, the calculations

involved in the filtering operation should be much lower than the search of the

complete double outage event space and result in a net reduction in computation time

and storage.

To evaluate the usefulness of the filtering method defined in (3.47) and (3.48), a

large system with 4609 lines, illustrated in Figure 3.16, was used. The minimum

distance between lines is zero, resulting from the case where two lines have the same

terminal bus. The maximum distance between any two lines is 1422 miles using circd

and 1429 miles using mind , and the mean distance is 342 miles using circd and 347

miles using mind .

 77

Figure 3.16: System used to test the impact of distance-based double-outage filtering.

Figure 3.17: Percentage of double-outage events considered as a function of the
distance threshold dthreshold using dcirc and dmin for threshold ranges of 0-1500 miles (a)
and 0-5 miles (b).

Figure 3.17 illustrates how the percentage of double-line outage events filtered by

the distance function varies with the distance cutoff values ranging from 0 to 1500

miles on the left side and 0 to 5 miles on the right side. These results indicate that

even a conservative threshold of 5 miles removes over 99.75% of the double-outage

events from consideration if the larger distance mind is used. For real-time

implementation, Figure 3.17 could be used to find the distance threshold

corresponding to a defined number of events (e.g., if a maximum search time is

 78

specified) or the number of events corresponding to a defined distance threshold (e.g.,

if a maximum interline distance is specified).

The other heuristic applied to double-line outage detection is the rejection of

potential outages when the estimated pre-outage flow is above 150% of the line rating

or 5 GW. This is the same heuristic used in single line outage detection and described

above in Section 3.2.4.

 79

4 EVENT DETECTION EVALUATION

4.1 Single-Line Outage Examples

To test the single-line outage detection algorithm, two tests were performed. The

first set of tests, using the system defined in Error! Reference source not found.,

examines the algorithm’s performance for each of the 56 single line outages on the

system. The second set examines the algorithm’s performance using real data from

the Tennessee Valley Authority system recorded during the outage of a major 500-kV

transmission line.

To evaluate single-line outage detection, several performance metrics are defined.

The first is an indicator function to signal whether or not a particular outage is

detected by the algorithm for a given set of detection parameters:

 () 1 ,outage of line detected
0 , otherwise

outaged
outaged

l
AboveThreshold l

⎧
= ⎨
⎩

 (4.1)

where outagedl is the outaged line. Next, a metric is defined to represent the NAD value

of the outaged line:

 ()
outagedoutaged lNADOutaged l NADVals= (4.2)

This metric indicates how well the expected and observed angles match up for the line

that was outaged. The rank of the outaged line in the sorted NADVals list is also

important:

 () { }: 1
outagedoutaged l lRankOutaged l l NADVals NADVals= < + (4.3)

Ideally, RankOutaged would be one, indicating that the algorithm has correctly

matched the outaged line with the observed angle changes.

 80

Taken together, these metrics define whether a line outage is detected

(AboveThreshold), how well the observed and expected angle changes match

(NADOutaged), and how well the expected angles from the outaged line compare

with those from other lines (RankOutaged).

4.1.1 All 37-bus single-line outages

The first set of tests was conducted with the system described in 0. The 56 in-

service lines were each outaged and a transient simulation was run for 5 s after the

outage. For the transient simulation, the default simulation parameters were used

from PSS/E version 31, including the default simulation time step of 1/120 s (i.e., a

sampling rate of 120 Hz). To simulate the data that would be obtained from a phasor

measurement unit, the raw simulated data was downsampled to a sampling rate of 30

Hz. A low-pass antialiasing filter with a cutoff of 15 Hz and delay compensation was

used to ensure that no out-of-bandwidth components were present in the simulated

measurements. An example of the simulated angle measurements at each bus on the

system for the outage of the line connecting buses 28 and 31 is shown in Figure 4.1.

The results of the transient simulation were then filtered using one of the methods

described in Chapter 2, and the observed angle changes were determined using the

method described in Chapter 3.1. These results were then processed using the

algorithm defined in Sections 3.2.2 and 3.2.4 to detect the outaged line.

 81

Figure 4.1: Original simulated angles (left side) and simulated PMU angle
measurements (right side) for the outage of the line connecting buses 28 and 31, with
all angles referenced to the SLACK345 bus angle.

For each study, one or more of the following parameters was varied:

• FilterLength : the length of the digital signal filter, equal to N from (2.1) (for

FIR filtering) or (2.4) (for median filtering)

• τ : the threshold used to determine whether an event has occurred, defined in

Section 3.1.1

• PMUSet : the set of bus numbers where measured angles are available

In addition, transN was set to FilterLength for FIR filtering and
2

FilterLength⎢ ⎥
⎢ ⎥⎣ ⎦

 for

median filtering based on the results shown in Figure 3.5.

4.1.1.1 All buses monitored

The first set of tests examines the effect of changing the threshold and filtering

methods with full PMU coverage (i.e., { }all system busesPMUSet =). Because all

buses are monitored, this test is designed to provide best case results for specific filter

parameters and angle detection thresholds.

 82

4.1.1.1.1 Median filtered angles

Figure 4.2: Minimum threshold values and error values for each line, ordered in
ascending order by minimum threshold, using a median filter of length 31.

One of the two filtering methods discussed in Chapter 2 is median filtering. The

first parameter considered is τ , which determines how much of an angle change

needs to occur before it is recognized as an event. Plotted in Figure 4.2 are the

NADOutaged and MinThreshold (the minimum value of τ needed to detect the

event) for each line outage on the system, sorted in ascending order by the

MinThreshold and using a window length of 31. For parallel lines, only one of the

lines is provided in this graph. A log scale is used for both y-axes due to the widely

varying values of MinThreshold and NADOutaged among the set of all outaged

lines. Several useful insights can be obtained by analyzing this figure. First of all, the

minimum threshold value needed to detect every line outage is 0.01 degrees; however,

 83

those events which require extremely low threshold values also have the highest

NADOutaged values, indicating that choosing the minimal threshold value will result

in misclassification of these lines. To illustrate this behavior, Figure 4.3 shows the

average NADOutaged value, taken over all line outages, for varying values of the

angle threshold. The reduction in NADOutaged as the angle threshold is brought

past 0.03 degrees, in essence ignoring the troublesome outages between buses 15-54

and 18-37, can clearly be seen in this plot and illustrates how the threshold value can

impact the NADOutaged results.

Figure 4.3: Mean NADOutaged values for median filtering using a window length of
31 with the angle threshold varied from 0.01 to 0.57 degrees; the left plot shows the
right plot zoomed in to the region τ∈[0.01,0.05].

To understand why the NADOutaged values are so high for the outages of lines

15-54 and 18-37, Figure 4.4 provides a detailed look at the angle changes for all

system buses due to the outage of the line with the highest NADOutaged value, 18-37,

using both ac and dc power flow solutions. Because the dc power flow assumptions

are used in constructing the expected angle changes, a failure of these assumptions to

hold for the outage of this line is responsible for the large NADOutaged value. The

 84

norm of the differences in angle changes between the ac and dc power flow solutions

is 0.045 degrees for this outage, which is comparable in magnitude to the norm of the

estimated angle changes under the dc power flow assumptions (0.04 degrees). One

possible reason for the poor performance of the dc power flow for the outage of the

18-37 or 15-34 lines is that these lines have the highest R/X ratios on the system, with

R/X = 1.82, and lines with high R/X ratios are known to cause errors in the accuracy

of the dc power flow.

Figure 4.4: Calculated changes in angles at all system buses due to the outage of a line
connecting buses 18 and 37 using the ac and dc power flow.

A high NADOutaged in and of itself does not guarantee that the algorithm is

failing to properly identify the outaged line; what really matters is where a particular

line outage ranks in the set of ordered NAD relative to all the other possible outages.

Figure 4.5 shows that the rank of the line in the NADVals list, RankOutaged, is indeed

‐0.05

‐0.04

‐0.03

‐0.02

‐0.01

0

0.01

0.02

0.03

1 3 5 10121314151617181920212427282930313233343537383940414447485053545556

an
gl
e
(d
eg
re
es
)

bus number

ac dc

 85

closely tied to the NADOutaged value of the outaged line. This figure is a scatter plot

of NADOutaged versus RankOutaged for a wide range of filter lengths (from 3 to 61

in increments of 2) and angle thresholds (from 0.01 to 0.57 degrees in increments of

0.01 degrees). As shown in the plot, for any detected event with an NADOutaged

value less than 0.8, the algorithm correctly ranks the outaged line. As the true system

response becomes less similar to the response predicted by the dc power flow,

NADOutaged gets larger and the ranking of the outaged line becomes poorer, in some

cases resulting in rankings as high as 43 out of 56 (for the outage of the two lines

between buses 18 and 37 using window lengths of 29 or 31 with angle thresholds of

0.01 or 0.02 degrees).

Figure 4.5: Scatter plot of NADOutaged versus RankOutaged for 84 867 detected line
outages using window lengths from 3 to 61 in increments of 2 and angle thresholds
from 0.01 to 0.57 degrees in increments of 0.01 degrees.

In addition to the effect of the angle threshold on successful line outage detection,

the window length can also have an effect on the value of NADOutaged by changing

the attenuation of oscillations and the estimation of the steady state angle changes.

Figure 4.6 shows the relationship between the median window length and the average

 86

NADOutaged value using a constant angle threshold value of 0.05 degrees. There is a

sharp decrease in the NADOutaged mean as the filter length is increased from 3 to 19,

then a more gradual decrease as the filter length is increased further. This

corresponds to the results shown in Figure 3.5, where missθΔ shows a rapid decay for

small window lengths and a more gradual decay for larger window lengths.

Figure 4.6: Effect of median window length on the mean NADOutaged value using an
angle threshold of 0.05 degrees.

Figure 4.7: Elimination of an oscillation in the BLT138 bus angle signal for the
outage of line 47-53 as the median window length is changed from 9 to 41.

The decrease in NADOutaged as the window length is increased is due to

improved attenuation. As an illustrative example, Figure 4.7 shows an oscillation in

 87

the angle signal of bus BLT138 that is eliminated as the median window length

changes from 9 to 41.

4.1.1.1.2 FIR filtered angles

The same outage cases were also analyzed using FIR filtering to determine the

angle change vectors. A graph analogous to that of Figure 4.2 showing the

MinThreshold and NADOutaged values for each of the lines in the system is provided

in Figure 4.8. The same problem at the low end of the graph can be seen—lines

which require very low threshold values have high NADOutaged values. This shows

that the disparity between the ac and dc power flow solutions (e.g., as shown in Figure

4.4) cannot be compensated for by changing the filtering method and is a fundamental

limitation due to the usage of the dc power flow equations to detect the outage event.

Figure 4.8: Minimum threshold values and error values for each line, ordered in
ascending order by minimum threshold, using an FIR filter of order 31.

 88

The usage of higher order FIR filters also has a minimizing effect on the

NADOutaged mean, as illustrated in Figure 4.9. Of particular note is that there are no

portions of the curve in which the NADOutaged mean increases as the FIR filter order

increases. Comparing this to Figure 4.6, the inverse relationship between filter length

and NADOutaged mean is more consistent for FIR filtering than median filtering.

One reason for this behavior is that FIR filtering attenuates better at all oscillation

frequencies above the cutoff frequency as the filter order is increased (see Figure

2.15), whereas this is not necessarily the case for median filtering (see Figure 2.16).

Figure 4.9: Effect of FIR filter order on the mean NADOutaged value using an angle
threshold of 0.05 degrees.

The scatter plot of NADOutaged versus RankOutaged in Figure 4.10 shows that

the relationship between these two values obtained from median filtering also holds if

FIR filtering is used, indicating that the algorithm is more sensitive to the accuracy of

the dc power flow assumptions than the filtering method for the case where all bus

angles are monitored.

 89

Figure 4.10: Scatter plot of NADOutaged versus RankOutaged for 86 438 detected
line outages using filter orders from 3 to 61 and angle thresholds from 0.01 to 0.57
degrees.

4.1.1.2 Eighteen buses monitored

To examine how the algorithm performs with lower PMU deployment, additional

tests were run with only half the buses monitored, using

{ }3,10,13,15,17,19, 21, 27, 29,31,33,35,38, 40, 44, 48,53,55PMUSet = .

Figure 4.11 shows the NADOutaged versus RankOutaged scatter plot for FIR and

median filtering using the same parameter range used to construct Figures 4.5 and

4.10. The outliers from the scatter plot using full PMU placement are no longer on

the plot because the reduced PMU set does not result in detection of the problematic

line outages. Of all the detected events, only 166 have rank not equal to one, and all

166 of these misrankings are with the outage of line 33-50.

 90

Figure 4.11: Scatter plot of NADOutaged versus RankOutaged for 82 289 detected
line outages (FIR filtering) and 81 846 detected line outages (median filtering) using
filter lengths from 3 to 61 and angle thresholds from 0.01 to 0.57 degrees.

Figure 4.12 shows the RankOutaged values for all instances in which the outage

of line 33-50 is detected with FIR and median filtering. Each blue dot represents a

combination of filter order and threshold such that the ranking of the 33-50 line in the

NADVals array is 3, and each green dot represents the combination such that the

ranking is 1. The areas without dots represent the cases where the event was not

detected because no candidate signals exceeded the threshold angle τ . This figure

demonstrates that setting the angle threshold to a low value can result in

misclassification of lines by the algorithm. In this case, the very small amount of

flow on line 33-50 before the outage, 2.3 MW, results in small observed angle

changes which are difficult to classify.

 91

Figure 4.12: Detailed RankOutaged distribution for the outage of line 33-50 using FIR
filter orders of 3-61 and angle thresholds of 0.01 to 0.57.

One additional result of changing from having a PMU at every bus to having a

PMU at 18 buses is how low of an NADOutaged is needed to guarantee correct

ranking of the line, referred to as NADOutagedMin. A higher value of

NADOutagedMin means that more confidence can be placed in the detection

algorithm results if the NADOutaged value for the detected line is much lower than

NADOutagedMin. For median filtering, the NADOutagedMin is 0.867 for complete

PMU coverage but drops to 0.252 in the case where only 18 PMUs are placed on the

system. This is expected, since having more information about the system should

allow for more confidence to be placed in the results based on that information.

Using FIR filtering gives similar results—NADOutagedMin is 0.254 in the case where

only 18 PMUs are placed on the system and 0.8403 for a full PMU placement.

The biggest difference between the performance of the algorithm using full PMU

coverage and half PMU coverage is in the number of lines which are distinguishable

with respect to the algorithm. Two line outages are indistinguishable with respect to

 92

the algorithm if the ,calc lΔθ� values calculated using (3.8) are scalar multiples of each

other, i.e.,

1 2, ,, calc l calc lα α∃ ∈ =Δθ Δθ� �\ (4.4)

One way this can occur is if two lines are in parallel. For the 37-bus case, an example

where this occurs is with the two parallel lines connecting buses 21 (WOLEN69) and

48 (BOB69). The outage of either of these lines is modeled as an injection and

withdrawal at bus 21 and 48, respectively, as discussed in Section 3.2.1 above. As a

result, the ,calc lΔθ� values calculated for the outage of either line will be the same,

regardless of the PMU deployment on the system. For full PMU deployment, as

considered in Section 4.1.1.1, this is the only situation in which two lines will satisfy

(4.4). This is due to the fact that the K matrix used in (3.8) is the N N× identity

matrix when all buses are monitored.

As the number of PMUs on the system is reduced, there are situations where

nonparallel lines still satisfy (4.4). In particular, this can occur when there is an

unmonitored portion of the system connected to only one or two PMU-monitored

buses.

The first case considered is the where there are two boundary buses. In Figure

4.13, the “Buses not monitored with PMUs” region is eliminated and replaced by

loads at the boundary buses equal to the flows out of the boundary bus. The systems

on the left and right of Figure 4.13 result in the same angles at the monitored buses.

 93

Figure 4.13: Reducing the full system to only buses that are monitored with PMUs.

To see why this is true, first the power flow equations for the left system are given:

{ } { }
() ()

() ()

, , ,
, ,

, , ,
, ,

monitored buses , unmonitored buses

 buses , ,

 buses , ,

m u

u m

m u

m i j m i j m u inj i
j i j i

j Buses j Buses
j i j i

u k j u k j m u inj k
j k j k

j Buses j Buses
j k j k

Buses Buses

i Buses F F P

k Buses F F P

ω ω

ω ω

∈ ∈
≠ ≠

∈ ∈
≠ ≠

= =

∀ ∈ + =

∀ ∈ + =

∑ ∑

∑ ∑

θ θ θ

θ θ θ

 (4.5)

where x ω y means there is a line connecting buses x and y, ,i jF is the power flow

from bus i to bus j, mθ is the set of angles at the monitored buses, uθ is the set of

angles at the unmonitored buses, and ,inj iP is the power injected into bus i (positive for

generators and negative for loads). Referring to Figure 4.13, the power flow

equations at the monitored buses can be rearranged so that uθ is eliminated and

replaced by the boundary flow:

 buses mi Buses∀ ∈ { }{ } ()

() () ()

() () ()

, ,
,

1, 1, 1, 1 ,1
1, 1, 1,

1 1 1

2, 2, 2, 2 ,2
2, 2, 2,

2 2 2

1,2 ,

,

,

m

m u m

m u m

i j m inj i
j i

j Buses
j i

j m j m u j m inj
j j j

j Buses j Buses j Buses
j j j

j m j m u j m inj
j j j

j Buses j Buses j Buses
j j j

F P

F F F F P

F F F F P

ω

ω ω ω

ω ω ω

∈
≠

∈ ∈ ∈
≠ ≠ ≠

∈ ∈ ∈
≠ ≠ ≠

=

+ = + =

+ = + =

∑

∑ ∑ ∑

∑ ∑ ∑

θ

θ θ θ θ

θ θ θ θ

 (4.6)

 94

Because Equation (4.6) constitutes the power flow equations for the right-side system

in Figure 4.13, the power flow solution mθ is the same for both the left and right

systems.

If an event occurs on the unmonitored system which results in changes to the

boundary flows, the external system can still be removed and replaced with injections

using the new line flows between the two systems, as shown in Figure 4.14. Barring

any net changes in power injections within the unmonitored system (e.g., if the event

is a line outage or a transfer between two buses within the unmonitored system), then

the sum of the power entering the unmonitored system must stay constant [70]. As a

result, the sum of the changes in flows and, consequently, the sum of the changes in

equivalent injections must equal zero (i.e., 1 2F FΔ = −Δ).

Figure 4.14: The changes in the equivalent injections due to the event will sum to zero
if there is no change in power injections within the unmonitored system.

One consequence of this fact is that any two line outages within the unmonitored

system will result in angle changes that are scalar multiples of one another (i.e.,

1 2, ,, calc l calc lα α∃ ∈ =Δθ Δθ� �\ , 1 2, unmonitoredl l ∈ system). To see why this is the case,

 95

first let
11,lFΔ be the change in flow on one of the boundary lines due to the outage of

line 1l , and let
21,lFΔ be the change in flow on one of the boundary lines due to the

outage of line 2l . Referring to Figure 4.14, the outages can be represented by

injections of { }1 11, 1,,l lF FΔ −Δ and { }2 21, 1,,l lF FΔ −Δ at the two boundary buses. The

estimated change in angles within the monitored system for the outage of line 1l can

then be expressed as

1

1

1

1

1

,1 1,1
,

1,,1

,1 ,

1,1

1,

1
1,

1

0

0

0

boundary bus 1
boundary bus 2

0

0
1 boundary bus 1
1 boundary bus 2

0

l from
calc l

tol

l calc l

l

l

l

P l
lP

P

F

F

F

F

−

−

−

⎡ ⎤
⎢ ⎥

←⎢ ⎥
= ⎢ ⎥←−⎢ ⎥

⎢ ⎥⎣ ⎦

=

⎡ ⎤
⎢ ⎥Δ ←⎢ ⎥= ⎢ ⎥−Δ ←
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥←⎢ ⎥= Δ
⎢ ⎥− ←
⎢ ⎥
⎣ ⎦

= Δ

Δθ KB

Δθ

KB

KB

��
��

� ��

1

1

1

,

1,
,

,1

l boundary

l
calc l boundary

l

F

P

Δ
=

Δθ

Δθ Δθ�
��

 (4.7)

Similarly, the change in angles due to the outage of line 2l can be expressed as:

 96

2

2

2

2

2

,2 2,1
,

2,,2

,2 ,

1,1

1,

1
1,

1

0

0

0

boundary bus 1
boundary bus 2

0

0
1 boundary bus 1
1 boundary bus 2

0

l from
calc l

tol

l calc l

l

l

l

P l
lP

P

F

F

F

F

−

−

−

⎡ ⎤
⎢ ⎥

←⎢ ⎥
= ⎢ ⎥←−⎢ ⎥

⎢ ⎥⎣ ⎦

=

⎡ ⎤
⎢ ⎥Δ ←⎢ ⎥= ⎢ ⎥−Δ ←
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥←⎢ ⎥= Δ
⎢ ⎥− ←
⎢ ⎥
⎣ ⎦

= Δ

Δθ KB

Δθ

KB

KB

��
��

� ��

2

2

2

,

1,
,

,2

l boundary

l
calc l boundary

l

F

P

Δ
=

Δθ

Δθ Δθ�
��

 (4.8)

Combining the results from (4.7) and (4.8), the condition in (4.4) holds:

1 2

1 2

1

1 2

2

,1 ,2
, ,

1, 1,

1, ,2
, ,

1,,1

,

l l
calc l boundary calc l

l l

l l
calc l calc l

ll

P P
F F

F P
FP

α α

= =
Δ Δ

Δ
= =

Δ

Δθ Δθ Δθ

Δθ Δθ

� �� �
� �

��
� �

��

 (4.9)

An example of where this occurs for the study case with 18 PMUs is shown in Figure

4.15. Relating this diagram to the discussion in the previous paragraph, buses 14, 34,

20, and 50 constitute the unmonitored system, buses 33 and 44 are the boundary

buses, and lines 14-44 and 33-50 are the boundary lines.

 97

Figure 4.15: Indistinguishable line outages using the 18 PMU configuration of the 37-
bus case.

Table 4.1: Algorithm results for lines shown in Figure 4.15 using order 61 FIR
filtering and angle threshold of 0.01 degrees

From bus To bus NADOutaged RankOutaged SharedRank FlowError (MW)

14 34 0.0138 1 4 0.6641

14 44 0.0636 1 4 0.8682

20 34 0.0394 1 4 0.0002

20 50 0.0349 1 4 0.6832

33 50 0.1966 1 4 0.6573

Using FIR filtering of order 61 and an angle threshold of 0.01 degrees, the

algorithm is able to correctly identify each line when it goes out (i.e., RankOutaged =

1 for all outages) and predict the pre-outage flow accurately. Table 4.1 provides

details on the algorithm’s performance for the outage of each of the lines in the

unmonitored system with two additional performance metrics:

() { }
() () ()estimated by algorithm from case

: 1
outaged

outaged outaged

outaged l l

outaged l l

SharedOutaged l l NADVals NADVals

FlowError l P P

= = −

= −
 (4.10)

 98

Ideally, SharedOutaged would be zero (indicating that the outaged line is

distinguished from all other lines) and FlowError would also be zero (indicating that

the algorithm predicted the pre-outage flow perfectly). The FlowError values in

Table 4.1 are very low, and the SharedOutaged confirms that the topology results in

each line being indistinguishable from the other with respect to the algorithm. One

way to mitigate the impact of having several lines that are indistinguishable is to

present the results by highlighting all lines which have RankOutaged equal to one on

the one-line diagram. This would still provide very useful information; namely, the

subset of the lines on the system that contains the outage line.

For the case where there is only one boundary bus between the monitored and

unmonitored system (i.e., the unmonitored system is radially connected to the

monitored system), the change in flow on the boundary lines will be zero if the net

power injections within the unmonitored system do not change (e.g., for a line outage

within the unmonitored system). Therefore, the change in equivalent injection

representing the unmonitored system is zero and the angles at the PMU-monitored

buses do not change. One instance of this topology for the 37-bus case is shown in

Figure 4.16. Because bus 37 is only connected to the rest of the system through one

bus, unless there is a PMU measurement from bus 37 there will be no estimated

change in the estimated system angles (,calc l =Δθ 0�). This is also shown in Figure 4.4,

where the angle changes obtained by running the dc power flow solution after the

outage of one of the lines connecting buses 18 and 37 are shown to be zero for all

buses besides bus 37.

 99

Figure 4.16: Instance of a radial system (single boundary bus) from the 37-bus case.

The inability of the algorithm to detect radial lines without monitoring of the

radial buses can be significant. For instance, if one of the lines between buses 18 and

37 goes out, it would be very helpful for the operator to know that there is only one

line left to serve the load at bus 37. However, to allow the algorithm to detect one of

the lines going out, a PMU must be placed at bus 37. This fact can help guide system

planners in determining where to place new PMUs on the system, particularly if there

is a known issue with reliability of one of the lines.

4.1.2 TVA system line outage

The second event tested is based on real measurements from the Tennessee

Valley Authority (TVA) system after the outage of a 500-kV transmission line

carrying approximately 1000 MW of power. The buses with PMU angle signals are

shown in Figure 4.17. The unfiltered PMU signals obtained from these PMUs are

shown in Figure 4.18, with the 8CORDOVA bus angle taken as the reference.

 100

Figure 4.17: Location of PMU angle measurements on TVA system and location of
the line outage.

Figure 4.18: Unfiltered angle measurements from before and after the line outage.

As with the 37-bus outages, an extensive sweep of filter type, filter length, and

angle threshold was conducted to test the algorithm with this event. Figure 4.19

shows the RankOutaged values for FIR and median filtering using filter lengths in the

 101

range of 3 to 401 and τ values between 0.1 and 0.5 degrees. Using a larger value of

τ results in an improved ranking for a given filter length due to the reduced

interference of noise in determining the sample maxn , which is in turn used to

determine observedΔθ . The median filter also performs much poorer than FIR filtering

for these signals, primarily due to the lack of noise attenuation (as shown in Figure

4.20).

Figure 4.19: RankOutaged values for detection of the TVA outage event using filter
lengths in the range of 3 to 401 and angle thresholds in the range of 0.1 to 0.5 degrees.

Figure 4.20: Differences in noise attenuation for FIR and median filtering for a filter
length of 379.

 102

The presence of noise in the TVA PMU signals is the key difference between

these values and those simulated for the 37-bus case. Because noise is present, the

lower bound on τ must be raised to avoid any misclassification of noise as an event.

To show how a poor choice of τ and filter length can cause false positives, the

following metric is defined:

 ()
1 , <

,
0 , otherwise

max line switchn n
EarlyEdge FilterLength τ

⎧
= ⎨
⎩

 (4.11)

where line switchn is the sample number corresponding to the outage of the Cumberland-

Davidson line. Figure 4.21 shows the contour plots of EarlyEdge for FIR and median

filtering, calculated with filter lengths between 3 and 401, and angle thresholds

between 0.1 and 0.5 degrees. The red areas indicate which combinations of filter

length and angle threshold result in misclassification of noise as an event. For any

filter length, increasing the threshold results in lower misclassification; increasing the

filter length can occasionally result in additional false positives due to the random

noise present in the signals. These results show that choosing a higher value of τ

will tend to give better results, although the downside of using a large value of τ is

the potential increase in false negatives.

 103

Figure 4.21: EarlyEdge contour plot for FIR (left) and median (right) filtering using
filter lengths in the range of 3 to 401 and angle thresholds in the range of 0.1 to 0.5
degrees.

Because the outaged line is connected to the PMU at 8CUMBERL, it is

interesting to see how the algorithm performs when the angle measurement at

8CUMBERL is removed. Figure 4.22 shows that the algorithm performs just as well

for certain combinations of filter length and angle threshold, but for other settings

there is significant performance degredation. One cause of the poorer performance

without the 8CUMBERL angle is that the oscillations are easier to attenuate for the

other buses due to the lower amplitudes, and as a result it takes longer for the

algorithm to settle on the maxn value. As maxn gets larger, more of the postoutage drift

in the steady state angle is incorporated into observedΔθ and results in poorer algorithm

performance. The correct detection of the line outage for lower filter orders is

promising, and indicates that the line outage can be detected with relatively low delay.

These results also provide strong evidence that a basic median filter is likely to

perform worse than a similarly sized FIR filter with noisy measurements due to

poorer attenuation of noise.

 104

Figure 4.22: RankOutaged values with and without the usage of 8CUMBERL PMU
angle measurements.

4.2 Generator Outage Examples

The next set of examples looks at how well the algorithm can detect generator

outages on the system. The 37-bus case used to test single-line outage detection was

also used to simulate PMU signals due to generator outages. Each of the nine

generator outages was simulated using PSS/E, and the data was then processed in the

manner discussed at the beginning of Section 4.1.1.

 105

4.2.1 All buses monitored

As with the single-line outages, the first case examined is the case where there are

PMUs located at all buses on the system. The two sets of contours in Figures 4.23

and 4.24 show how well the algorithm ranks the outaged generator based on the angle

measurements using FIR filtering with filter orders between 3 and 301 and angle

thresholds between 0.1 and 3.0 degrees. The blank spaces in the contours show where

the event was not detected (i.e., no angle exceeded the threshold).

Figure 4.23: Contour plot of RankOutaged for generator outages at WEBER69,
JO345, SLACK345, and LAUF69 using FIR filtering orders of 3 to 301 and angle
thresholds of 0.1 to 3.0 degrees.

 106

Figure 4.24: Contour plot of RankOutaged for generator outages at BOB69,
ROGER69, BLT138, and BLT69 using FIR filtering orders of 3 to 301 and angle
thresholds of 0.1 to 3.0 degrees.

The only generator that is grossly misranked is WEBER69. As with the single-

line outages that resulted in small angle changes, the small deviation in angles due to

the outage of this generator make it very difficult to match the correct outage to the

observed angle changes. This is further evidence that selecting the correct value of τ

is necessary to ensure the algorithm detects events properly.

 107

The reason that the JO345 outages have RankOutaged equal to two for large

portions of the contour is the inability of the algorithm to attenuate the oscillations

with a filter cutoff frequency of 0.1 Hz. Figure 4.25 shows that an FIR filter of order

151 with a cutoff frequency of 0.1 Hz is incapable of properly damping the

oscillations that are caused by this outage. Lowering the cutoff frequency to 0.01 Hz

can improve results, as shown in Figure 4.26, but only for filter orders above 400.

Figure 4.25: Prevailing oscillations after the outage of a JO345 generator using FIR
filtering with filter order 151 and cutoff frequency of 0.1 Hz.

Figure 4.26: Effect of FIR low-pass cutoff frequency on the detection and rank of the
JO345 generator outage.

 108

The same tests were run using median filtering instead of FIR filtering, and the

resulting contour plots are shown in Figures 4.27 and 4.28. The performance of the

algorithm is similar for both filtering methods, although median filtering is able to

correctly rank the JO345 outage slightly more often than FIR filtering. The other key

difference is that the band in Figure 4.24 where RankOutaged is equal to two for the

BLT138 outage is absent in the same contour of Figure 4.28.

Figure 4.27: Contour plot of RankOutaged for generator outages at WEBER69,
JO345, SLACK345, and LAUF69 using median filtering with window lengths of 3 to
301 and angle thresholds of 0.1 to 3.0 degrees.

 109

Figure 4.28: Contour plot of RankOutaged for generator outages at BOB69,
ROGER69, BLT138, and BLT69 using median filtering with window lengths of 3 to
301 and angle thresholds of 0.1 to 3.0 degrees.

Because the median filter has only one parameter, the window length, there is no

need to tune any additional parameters such as the cutoff frequency. Figure 4.29 is

presented to contrast the performance when median and FIR filtering are used.

Comparing Figures 4.26 and 4.29, median filtering results in a RankOutaged value of

one significantly more often than FIR filtering with 0.1 or 0.01 Hz cutoff frequencies.

 110

Figure 4.29: A detailed look at ranking and detection of the JO345 generator outage
using median filtering.

4.2.2 Eighteen buses monitored

The same placement of eighteen PMUs used in the single outage study was used

to see how well the generator outage detection algorithm performs with sparser PMU

deployment. Figures 4.30 and 4.31 show the RankOutaged plots for the generator

outages using this reduced PMU set with FIR filtering.

Figure 4.30: Contour plots analogous to those in Figure 4.23 for FIR filtering with 18
buses monitored instead of full bus monitoring. The WEBER69 outage is undetected
and the LAUF69 outage has RankOutaged equal to one over the entire region, so
these contours are not shown.

 111

Figure 4.31: Contour plots analogous to those in Figure 4.24 for FIR filtering with 18
buses monitored instead of full bus monitoring.

As the number of monitored buses decreases, the set of angles which can signal

the occurrence of an event is reduced. This is why there are larger empty regions in

the contours with only 18 buses monitored—some angle measurements needed to

detect the line with higher values of τ are no longer available. On real systems, this

knowledge of how a change in the set of monitored buses impacts the number of false

negatives can help in deciding where to place PMUs on the system. Finally, Figures

4.32 and 4.33 show that median filtering results in a similar reduction in the ability to

detect the outaged generators.

 112

Figure 4.32: Contour plots analogous to those in Figure 4.27 for median filtering with
18 buses monitored instead of full bus monitoring. The WEBER69 outage is
undetected and the LAUF69 outage has RankOutaged equal to one over the entire
region, so these contours are not shown.

Figure 4.33: Contour plots analogous to those in Figure 4.28 for median filtering with
18 buses monitored instead of full bus monitoring.

 113

4.3 Double-Line Outage Examples

4.3.1 All nonislanding double-line outages

The same 37-bus system was used to test the performance of double-line outage

detection. A time domain simulation was run for each of the 1504 nonislanding

double-line outages to see how well the algorithm detects double-line outages using

the methods described in Section 3.4.

4.3.1.1 All buses monitored

The first PMU configuration considered is with PMUs monitoring every system

bus. The algorithm was run using filter lengths of 3, 9, 31, and 61 with FIR and

median filtering using τ values of 0.02, 1.83, 2.5, and 5.16 degrees. These τ values

were chosen so that, for signals filtered with an FIR filter of order 31, 100%, 75%,

50%, and 25% (respectively) of the outages were detected by at least one angle

exceeding the threshold.

Figure 4.34 shows in matrix form the RankOutaged value for each double-line

outage on the system, with each row/column representing one of the 56 in-service

lines. The color of each square is used to indicate how the algorithm performed; red

indicates a misranking (i.e., RankOutaged > 1) and green indicates correct ranking

(i.e., RankOutaged = 1). The blank squares represent single-line outages and double-

line outages that were not simulated due to islanding. Of the 1504 total double-line

outages considered, 1231 are ranked correctly and 273 are misranked; of these 273,

255 involve the two lines between buses 18 and 37 and the three lines between buses

15 and 54. These lines correspond to the rows with high red density at the top of

Figure 4.34. Given the high R/X ratios of these lines, it is unsurprising that the

 114

algorithm, which relies on the dc power flow equations, is unable to properly rank

these outages. Also, these were the same lines that caused problems for the single-

line outage detection (see Figure 4.2). The only way to solve this problem would be

to use the full ac power flow equations rather than the dc power flow equations when

attempting to match outages with observed measurements; however, this would lead

to significantly higher computational costs and require much more state information

than is currently available in real power systems over a suitably wide area.

Figure 4.34: Ranking of each line-line combination using FIR filter order 31, angle
threshold of 0.02 degrees. Green squares indicate double-line outages where
RankOutaged = 1, red squares indicate RankOutaged > 1 (i.e., misclassification), and
white squares indicate outages that were not tested.

Fortunately, due to the small angle changes associated with the outages of the

high R/X lines, many of the double outages involving lines 18-37 and 15-54 are

undetected if τ is set higher. Figure 4.35 shows the RankOutaged matrix for the four

 115

values of τ used to test the algorithm, where black squares are used to indicate events

that were not detected. With the threshold set to 1.18 degrees, the number of

misranked events involving the 18-37 and 15-54 lines drops from 255 to 100. The

undesirable side effect is that several outages which were ranked properly in the

0.02τ = degree runs are no longer detected.

Figure 4.35: Effect of angle threshold on event detection with 31-order FIR filtering;
black squares represent outages that were undetected due to insufficient angle
changes.

Outside of the problems due to the 18-37 and 15-54 lines, there are still several

instances where a double line outage is incorrectly identified. Using the 0.02τ =

 116

degree results, there are 21 additional misranked outages. Detailed information about

these misranked outages is provided in Table 4.2, with the entries sorted by

RankOutaged.

Table 4.2: Misrankings that do not involve 18-37 or 15-54 using FIR filtering with a
filter order of 31 and angle threshold of 0.02 degrees.

From bus
(line 1)

To bus
(line 1)

Circuit
ID

(line 1)
From bus
(line 2)

To Bus
(line 2)

Circuit
ID

(line 2) RankOutaged NADOutaged
39 38 1 39 38 2 105 0.0165
44 41 1 44 41 2 105 0.0137
24 44 1 47 53 1 44 0.0151
17 19 1 31 28 1 33 0.0549
31 38 1 17 19 1 30 0.0270
31 28 1 39 40 1 26 0.0205
10 13 1 10 39 1 23 0.0193
10 39 1 47 53 1 23 0.0212
31 28 1 47 53 1 21 0.0173
44 41 2 5 44 1 21 0.0129
44 41 1 5 44 1 19 0.0208
31 28 1 21 48 1 9 0.0062
31 28 1 21 48 2 9 0.0353
31 28 1 14 34 1 8 0.0162
31 28 1 13 55 1 6 0.0197
32 29 1 3 40 1 5 0.0571
31 28 1 35 31 1 4 0.0201
24 44 1 33 50 1 2 0.0209
39 38 1 31 38 1 2 0.0336
39 38 2 31 38 1 2 0.0200
44 41 1 24 44 1 2 0.0227

The two entries with the highest RankOutaged values in Table 4.2 correspond to

the outage of parallel lines between buses 39 and 38 and between buses 44 and 41.

To better understand what happens in the case of the outage of the two lines between

buses 39 and 38, Figure 4.36 shows the observed angle changes due to the outage

along with the best match in angle changes due to this event (i.e.,

* *
39 38,1 ,39 38,1 39 38,2 39 38,2calcP P− − − −+Δθ Δθ� �� �� � as defined in (3.41)) and the best match in angle

 117

changes due to the simultaneous outage of line 39-38, circuit 1, and line 39-47, circuit

1 (* *
39 38,1 ,39 38,1 39 47,1 39 47,1calcP P− − − −+Δθ Δθ� �� �� �).

Figure 4.36: A detailed look at the observed and event matching angle changes due to
the outage of the parallel lines between buses 39 and 38.

The predicted angle changes due to both the true outaged event and the top-

ranked event are very close, as shown in the figure. In addition, the top-ranked event

includes one of the parallel lines; in fact, in each of the 104 double-line outages which

have lower NAD values than the true line outage, either line 39-38, circuit 1 or line

39-38, circuit 2 is one of the two outages. Because only one parameter is used to fit

‐4

‐3.5

‐3

‐2.5

‐2

‐1.5

‐1

‐0.5

0

0.5

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

an
gl
e
ch
an

ge
 (d

eg
re
es
)

bus number

Observed angle changes

Best match of actual event to observed angle changes

Best match of any event to observed angle changes

 118

parallel lines to observed angle changes (as discussed in Section 3.4.1), the extra

degree of freedom when other lines are considered as possibilities allows the

algorithm to more closely match the observed angles. Restriction of the double-

outage event set to highly probable outages should help to mitigate this effect. In

addition, if the top 10 results were presented to an operator, the fact that one of the

39-38 lines shows up in each entry would suggest that something has happened to one

of those lines.

The highest RankOutaged value for a nonparallel set of lines is the outage of 24-

44, circuit 1 and 47-53, circuit 1. In this case, all of the double-line outages with NAD

values less than the true event NAD value include line 24-44, circuit 1. RankOutaged

does not decrease as the filter order is increased to 61, indicating that the inability of

the algorithm to recognize line 47-53, circuit 1 as the second outaged line is due to the

mismatch between the dc power flow solution and the true system response to the

outages.

The double-line outages do not exhibit any of the problematic high amplitude,

low-frequency oscillations which make filtering such a crucial component of

generator outage detection. Accordingly, the differences in results based on FIR and

median filtering are minimal. Table 4.3 contains a summary of the detection results

for each combination of filter length and angle threshold mentioned at the beginning

of this section. The statistics based on FIR filtering are outside of parentheses, and

the statistics based on median filtering are inside parentheses. The similarity in the

results for the two filtering methods, particularly as the filter length increases, is

 119

further indication that failure in the dc power flow assumptions is the primary cause

of incorrect ranking of events.

Table 4.3: Summary of algorithm results for FIR (median) filtered angle
measurements with complete bus monitoring.

In summary, double-line outage detection is substantially more likely to generate

misrankings due to the extra degree of freedom in choosing two, rather than one, pre-

outage flows to match expected angles to observed angles. As a result, careful

attention must be paid to how the double-outage event set is defined, not only to

reduce the computational effort involved in searching through the events, but also to

reduce the chances of misranking the true outage event. Also, the choice of filtering

method and filter length has only a slight impact on performance, as indicated in

Table 4.3.

 120

4.3.1.2 Eighteen buses monitored

In addition to testing with PMUs at all buses, tests of the double-line detection

algorithm were run with the 18 bus set defined in Section 4.1.1.2. As with single-line

outage detection, there are some special cases of double-line outages which deserve

special consideration if some buses are unmonitored.

The first case considered is where both outaged lines are in the unmonitored

system and are connected to the remaining system through two boundary buses. Let 1l

and 2l denote the lines which are outaged. Then, because the vectors used to

minimize the difference in observed and expected angles are the same in the single-

and double-line outage detection (see (3.8) and (3.36)), the change in angles on the

monitored system must be colinear (i.e.,
1 2, ,, calc l calc lα α∃ =Δθ Δθ� �). As a result, the

minimization of the difference between the observed and expected angles, (3.37),

collapses to a one-dimensional minimization,

()
()

()

1 2
,1 ,2

1 1
,1 ,2

1
,1 ,2

,1 , ,2 ,
,

,1 , ,2 ,
,

, ,1 ,2
,

min

min

min

l l

l l

l l

observed l calc l l calc l
P P

observed l calc l l calc l
P P

observed calc l l l
P P

P P

P P

P P

α

α

Δ − + =

Δ − + =

Δ − +

θ Δθ Δθ

θ Δθ Δθ

θ Δθ

� �� �

� �� �

� �� �

� �� �� �

� �� �� �

� �� � �

 (4.12)

which has the following solution:

()
()

()

1

1 1

1
,1 ,2

1

*
,

,1 ,2
, ,

, ,1 ,2
,

*

, ,1 ,2

min
l l

calc l observed
l l

calc l calc l

observed calc l l l
P P

observed calc l l l

P P

P P

P P

α

α

α

⋅Δ
+ =

⋅

Δ − + =

Δ − +

Δθ θ
Δθ Δθ

θ Δθ

θ Δθ

� �� �

�� �� �
� �

� �� � �

� �� � �

 (4.13)

An additional equation would allow for determination of ,1lP�� and ,2lP�� , but the

monitored system only “sees” the composite effect of the two outages, and it is

 121

therefore not possible to determine ,1lP�� and ,2lP�� uniquely. On the other hand, the

outage event can still be ranked by comparing the expected and observed angle

changes.

Another interesting case is when one of the outaged lines connects an

unmonitored portion of the system to a single bus within the monitored system. As

discussed in Section 4.1.1.2, the outage of a radial line connected to one boundary bus

results in no angle changes on the monitored system (i.e., ,radial linecalc =Δθ 0�).

Referring to the boundary line as 2l , the following formulation of the angle matching

minimization is obtained:

()
()

1 2
,1 ,2

1
,1 ,2

1
,1

,1 , ,2 ,
,

,1 , ,2
,

,1 ,

min

min

min

l l

l l

l

observed l calc l l calc l
P P

observed l calc l l
P P

observed l calc l
P

P P

P P

P

Δ − + =

Δ − + =

Δ −

θ Δθ Δθ

θ Δθ 0

θ Δθ

� �� �

� �� �

��

� �� �� �

� ��� �

� ��

 (4.14)

Because there are no angle changes associated with the boundary line 2l , the

minimization reduces to a single-line outage detection problem for the other line. If

both lines are connected through only one bus to the monitored system, then both

calcΔθ� vectors are zero and there is no way to identify the outage with the algorithm.

Finally, there are instances in which two or more double-line outages are

indistinguishable from one another even though the individual calcΔθ� of each line are

not collinear. Just as in the single-line outage case indistinguishable lines resulted

from there being only two buses connecting the monitored and unmonitored system,

indistinguishable double-line outages occur when there are only three buses

connecting the monitored and unmonitored system (see Figure 4.37).

 122

Figure 4.37: Unmonitored system connected to monitored system through three
boundary buses.

 Two double-line outages are indistinguishable if the following condition is true:

1, 1 2, 1 1, 2 2, 2, , , ,

, ; , ;

EV EV EV EVcalc l calc l calc l calc l

a b c d
a b c d

∀ ∈ ∃ ∈
Δ + Δ = Δ + Δθ θ θ θ

\ \
 (4.15)

In (4.15), one double-line outage in the unmonitored system is referred to as EV1, and

the other double-line outage is referred to as EV2. The lines constituting the outage

EV1 are 1, 1EVl and 2, 1EVl ; similarly, 1, 2EVl and 2, 2EVl refer to the lines in the double-

outage event EV2. If the relation in (4.15) is true, then when matching either event

against the observed angle changes the same minimum difference will be obtained.

To determine the cases under which (4.15) holds, first let 1
1

EVFΔ be the change in

flow on boundary line 1 due to EV1, with similar notation to designate the other

boundary flows (1 1 2 2
2 3 1 2, , ,EV EV EV EVF F F FΔ Δ Δ Δ and 2

3
EVFΔ) depicted in Figure 4.37. If

no islanding results from the outages in the unmonitored system, then the bus power

 123

injections in the unmonitored system will stay the same and the boundary flows must

sum to zero for each outage:

 1 2 3 0F F FΔ +Δ +Δ = (4.16)

As was done in 4.1.1.2, it can be shown that the ,calc lΔθ� vector for the outage of any

single line l in the unmonitored system can be determined by representing the changes

in boundary flows as changes in injections at the boundary buses:

1

1
, 2

3

0
1 boundary bus 1 row
0

0
1 boundary bus 2 row
0

0
1 boundary bus 3 row
0

l

l
calc l

l

F

F

F

−

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥Δ ← +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟
⎜ ⎟⎡ ⎤
⎜ ⎟⎢ ⎥Δ = Δ ← +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦
⎜ ⎟

⎡ ⎤⎜ ⎟
⎢ ⎥⎜ ⎟Δ ←⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

θ KB� (4.17)

Combining (4.16) and (4.17), ,calc lΔθ� can be expressed in terms of 1
lFΔ and 2

lFΔ by

eliminating 3
lFΔ :

()3 1 2

1

1
,

2

0
1 boundary bus 1 row
1 boundary bus 3 row

0

0
1 boundary bus 2 row
1 boundary bus 3 row

0

l l l

l

calc l

l

F F F

F

F

−

Δ = − Δ + Δ

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥←⎜ ⎟⎢ ⎥Δ +⎜ ⎟⎢ ⎥− ←
⎜ ⎟⎢ ⎥

⎣ ⎦⎜ ⎟Δ = ⎜ ⎟⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟←⎢ ⎥Δ⎜ ⎟⎢ ⎥− ←⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

θ KB�

 (4.18)

Equation (4.18) can then be simplified further to give ,calc lΔθ� as the sum of two

scalar-vector products:

 124

1
, 1

1
2

, 1 1 2 2

0
1 boundary bus 1 row
1 boundary bus 3 row

0

0
1 boundary bus 2 row
1 boundary bus 3 row

0

l
calc l

l

l l
calc l

F

F

F F

−

−

⎡ ⎤
⎢ ⎥←⎢ ⎥Δ = Δ +
⎢ ⎥− ←
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥←⎢ ⎥Δ
⎢ ⎥− ←
⎢ ⎥
⎣ ⎦

Δ = Δ Δ + Δ Δ

θ KB

KB

θ θ θ

�

�
 (4.19)

Combining (4.19) with (4.15), the condition under which two double-line outages are

indistinguishable can be restated in terms of the 1Δθ and 2Δθ vectors from (4.19):

() ()
() ()
() ()
()

1, 1 1, 1 2, 1 2, 1

1, 2 1, 2 2, 2 2, 2

1, 1 2, 1 1, 1 2, 1

1, 2 2, 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 1 2 2 2

1 1 1 2

, , , ,
EV EV EV EV

EV EV EV EV

EV EV EV EV

EV EV

l l l l

l l l l

l l l l

l l

a b c d

a F F b F F

c F F d F F

a F b F a F b F

c F d F c F

∀ ∈ ∃ ∈

Δ Δ + Δ Δ + Δ Δ + Δ Δ =

Δ Δ + Δ Δ + Δ Δ + Δ Δ

Δ + Δ Δ + Δ + Δ Δ =

Δ + Δ Δ + Δ

θ θ θ θ

θ θ θ θ

θ θ

θ

\ \

()1, 2 2, 2
2 2

EV EVl ld F+ Δ Δθ

 (4.20)

One condition under which (4.20) is true is if the coefficients on the 1Δθ and 2Δθ

vectors match on both sides of the equation:

1, 2 2, 2 1, 1 2, 1

1, 2 2, 2 1, 1 2, 1

1, 2 2, 2 1, 1 2, 1

1, 2 2, 2 1, 1 2, 1

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

EV EV EV EV

EV EV EV EV

EV EV EV EV

EV EV EV EV

l l l l

l l l l

l l l l

l l l l

c F d F a F b F

c F d F a F b F

F F a F b Fc
dF F a F b F

Fc
d

Δ + Δ = Δ + Δ

Δ + Δ = Δ + Δ

⎡ ⎤ ⎡ ⎤Δ Δ Δ + Δ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

Δ Δ Δ + Δ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Δ⎡ ⎤
=⎢ ⎥

⎣ ⎦

1, 2 2, 2 1, 1 2, 1

1, 2 2, 2 1, 1 2, 1

1

1 1 1 1

2 2 2 2

EV EV EV EV

EV EV EV EV

l l l l

l l l l

F a F b F

F F a F b F

−
⎡ ⎤ ⎡ ⎤Δ Δ + Δ
⎢ ⎥ ⎢ ⎥
Δ Δ Δ + Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (4.21)

The inverse matrix in (4.21) exists if and only if the determinant is nonzero, i.e.,

1, 2 2, 2 2, 2 1, 2

1, 2 1, 2

2, 2 2, 2

1 2 1 2

1 2

1 2

0EV EV EV EV

EV EV

EV EV

l l l l

l l

l l

F F F F

F F
F F

Δ Δ −Δ Δ ≠

Δ Δ
≠

Δ Δ

 (4.22)

The condition in (4.22) will be true if the line outages are distinguishable with respect

 125

to the single-line outage detection algorithm (i.e., the angle change vectors associated

with each line are not scalar multiples of one another). If (4.22) is false, then the

double outages EV1 and EV2 may still be indistinguishable, but for other reasons

(e.g., if there are three lines in parallel). If (4.22) is true, then (4.21) gives the unique

values of c and d for each value of a and b that are needed to satisfy the criteria for

indistinguishable double outages, (4.15). Therefore, except for those double-outage

events where condition (4.22) is violated, the double-line outages in the unmonitored

system connected by three buses to the monitored system will not be distinguishable.

Figure 4.38 shows a portion of the 37-bus system that, when monitored at the 18

buses defined above, has 11 indistinguishable double-line outages. The set of double-

line outages that are indistinguishable is provided in Table 4.4. There are six lines

within the unmonitored system, which are, using the notation (from bus number, to

bus number, circuit ID), defined as: (35, 31, 1), (35, 56, 1), (56, 29, 1), (28, 29, 1),

(28, 29, 2), and (31 ,28 ,1). The indistinguishable double-outage set does not include

four of the line combinations: {(29, 28, 1), (29, 28, 2)}, {(29, 28, 1), (31, 28, 1)},

{(29, 28, 2), (31, 28, 1)}, and {(35, 56, 1), (56,29,1)}. What distinguishes these

double-outage sets from the rest of the double-outage sets is that these sets involve

two lines which have collinear ,calc lΔθ� vectors. As a result, the condition in (4.22) is

not true and the condition for two double-line outages to be indistinguishable is not

satisfied.

 126

Figure 4.38: Portion of the 37-bus system that, when monitored with the 18 PMU set,
has 11 indistinguishable double-line outages.

Table 4.4: Indistinguishable double-line outages for the portion of the 37 bus system
illustrated in Figure 4.38

Line 1
From bus

Line 1
To bus

Line 1
Circuit ID

Line 2
From bus

Line 2
To bus

Line 2
Circuit ID

35 31 1 35 56 1
28 29 1 35 31 1
28 29 1 35 36 1
28 29 1 56 29 1
28 29 2 35 31 1
28 29 2 35 36 1
28 29 2 56 29 1
31 28 1 35 31 1
31 28 1 35 36 1
31 28 1 56 29 1
35 31 1 56 29 1

Due to the complicating factors associated with having unmonitored buses, the

algorithm uses several steps to ensure each possible double outage is properly handled

when attempting to match the event with the observed angle changes. Figure 4.39

shows the process that is undertaken for each event that is detected. The set of

diamonds on the right-hand side of the figure constitute a cascaded classification

system to determine how the double-line outage event should be modeled and fit to

the observed angle changes.

 127

Figure 4.39: Program flow for the double-line outage detection implementation,
including cascading event classification

To test the performance of the algorithm with the lower number of PMUs, filter

lengths of 3, 9, 31, and 61 were used along with angle thresholds of 0.006, 0.71, 1.04,

and 2.31 degrees. These angle thresholds were chosen based on detecting 100%,

75%, 50%, and 25% of the events using FIR filtering of length 31.

The results based on FIR filtering are very similar to those results obtained with

full PMU placement. Figure 4.40 provides the RankOutaged matrix for FIR filtering

of order 31 using the reduced PMU set. Comparing this with Figure 4.35, the

 128

performance of the algorithm with the reduced PMU set is very similar to using the

full PMU set. Also, the negative impact of the lines between buses 18 and 37 and the

lines between buses 15 and 54 is clearly not mitigated by reducing the number of

PMUs. Figure 4.41 shows that the RankOutaged values also change very little when

median filtering is used on the reduced PMU measurements.

Figure 4.40: FIR filtered results, using a filter order of 31 and the set of 18 PMUs
defined in Section 4.1.1.2.

 129

Figure 4.41: Median filtered results, using a window length of 31 and the set of 18
PMUs defined in Section 4.1.1.2.

As with the single-line outage tests, the most significant difference between

having a full PMU deployment and 18 PMUs is the number of events which are

indistinguishable. To quantify this effect, the SharedOutaged quantity defined in

(4.10) is examined for the two different PMU deployments with 31-order FIR filtering

and τ set to the minimum needed to detect all events using the full PMU deployment.

Figure 4.42 shows that the ability of the algorithm to differentiate between the true

outage event and other events on the system is significantly impaired by a decrease in

PMU deployment. From an operational standpoint, higher SharedOutaged values

 130

require listing 1SharedOutaged + events rather than just listing one event, but this

can still be useful information for operators if the results are visualized.

Figure 4.42: Effect of reducing the PMU set on SharedOutaged with 31-order FIR
filtering and τ set to the minimum value needed to detect the maximum number of
events.

The black squares in Figure 4.42 designate double-line outages which were

detected but not ranked. This can only occur when calcΔθ� is equal to 0 for one or

both of the lines outaged. If only one of the lines has calc =Δθ 0� , then (4.14) is

applied, and if the necessary pre-outage flow on the other line is greater than 1.5 times

the line rating, then the event is removed from consideration (as discussed at the end

of Section 3.4.4) and not ranked. If both calcΔθ� vectors are 0 , then it is not possible

to perform the minimization in (3.37) and the event is not ranked.

4.3.2 All nonislanding double-line outages that share at least one
terminal

The results presented in Section 4.3.1 are based on the simultaneous, unforced

outage of each pairwise combination of lines on the system. In real power systems,

 131

two lines are unlikely to go out simultaneously unless they are close to one another,

which is the basis for the filtering mechanism described in Section 3.2.4. To ascertain

the performance of the algorithm for more realistic double-line outage events,

additional tests were run using only those outages where at least one terminal bus is

shared between the two lines. The set of events E tested to match with the observed

angle changes was similarly restricted. This restriction reduces the number of

possible double line outage events from 1504 to 115.

The algorithm was first tested with full PMU deployment using the same filter

lengths and angle thresholds from Section 4.3.1.1. A summary of the algorithm

performance is provided in Table 4.5. Comparing these results with those from Table

4.3, there are significantly fewer misranked events. Figure 4.43 shows the

RankOutaged values for the full double-outage event set (left side) and the set of

double outages where a terminal bus is shared (right side) using the same row/column

ordering and color scheme as the figures in Section 4.3.1. The misranked double-line

outages which share a terminal bus are still concentrated in the first few rows—11 of

the 16 misranked outages include lines between buses 18-37 and 15-54. As in the full

event case, there are still problems with parallel line outages, although the

RankOutaged value is reduced due to the smaller size of the event detection set E .

 132

Table 4.5: Summary of algorithm results for FIR (median) filtered angle
measurements with complete bus monitoring considering only double line outages

where a terminal bus is shared

Figure 4.43: RankOutaged results for FIR filtering with angle threshold of 0.02
degrees, for the full double-outage set (left side) and the double outages which share a
terminal bus (right side). Red squares indicate where RankOutaged is greater than
one and green squares indicate where RankOutaged equals 1. White squares indicate
events which were not considered.

If the PMU coverage is reduced to 18 PMUs, the ranking of the events is not

significantly impacted. In addition, reducing the event set to only those double-line

 133

outages that share a terminal bus reduces the increase in SharedOutaged. Figure 4.44

shows the change in SharedOutaged for each of the double-line outages as the PMU

set is reduced to 18 PMUs. Although there is a small increase in SharedOutaged

values as the number of PMUs is reduced, the maximum SharedOutaged value is 4.

This is much lower than the maximum SharedOutaged value of 14 which is obtained

if all events are considered and 18 PMUs are used (shown in Figure 4.42).

Figure 4.44: Effect of reducing the PMU set on SharedOutaged with 31-order FIR
and τ set to the minimum value needed to detect all events, with the event set
restricted to those lines that share a terminal bus.

 134

5 PHASOR MEASUREMENT UNIT PLACEMENT
FOR EVENT DETECTION

5.1 Overview

If the goal of deploying additional PMUs is to improve event detection, then there

are some key characteristics of a given set which must be considered:

• Detection of events of interest

• Proper ranking of detected events

• Differentiation between events

Optimized placement of PMUs requires two components: an objective function to

maximize (or minimize) and a method of searching the space of PMU sets so that the

objective function is maximized (or minimized). The first section below deals with

defining an objective function to meet certain criteria, while the second section

provides details on simulated annealing (SA), the method used to search the set space.

Finally, the third section presents some results showing how exhaustive search and

SA perform in placing PMUs based on the objective functions.

5.2 Objective Function Definition

To evaluate each PMU placement set, an objective function must be defined

which provides a numerical fitness value for each PMU set. For the purposes of PMU

placement, it is assumed that filtering is applied to the raw measurements such that

the observed angle change vector is equal to the difference in steady state angles (i.e.,

all oscillations around the new steady state angles are completely attenuated). To

determine the observed angle change vector corresponding to each event, the

 135

postevent angle after 20 s was subtracted from the original angle, with the

measurements filtered using a 61-order FIR filter. On the other hand, the angle

threshold, which determines which events are detected by the algorithm, is allowed to

vary so that the optimization function is maximized. The objective functions below

include τ in their definition, and the impact of τ on the objective function is

discussed in each individual section.

5.2.1 Objective 1: Maximize the number of correctly ranked events

The simplest objective function is to evaluate the PMU set by maximizing the

number of events that are detected and ranked correctly. An optimization problem

which would meet this objective is

() ()

() ()

()

1

1 1

*
1

1 , , , 1
, ,

0 , event undetected

max , ,

arg max

Rank

Rank Rank
e

Rank
PMUSet

RankOutaged e PMUSet
X e PMUSet

ObjFunc PMUSet X e PMUSet

PMUSet ObjFunc PMUSet

τ

τ
τ

τ
∈

⎧ =
= ⎨
⎩

=

=

∑
E

 (5.1)

where E is the set of events used to evaluate the PMU placement. Note that the set

*PMUSet can have several members, corresponding to several PMU placements

which result in the same maximum value of the objective function. In (5.1), the

dependence of RankOutaged on the angle threshold is made explicit in determining

RankOutaged and 1RankX . Notice that if an event is undetected, it does not impact the

objective function; as a result, this particular objective function does not penalize a

particular PMU placement for resulting in misranked events. Therefore, the inner

maximization over τ should always choose τ equal to the minimum angle change

over all angles for each event, since choosing a different τ would reduce the number

 136

of possible events where RankOutaged = 1. The primary shortcomings of this

objective function are the lack of a penalty for misranking of events and the lack of a

penalty for having events which share the same rank.

5.2.2 Objective 2: Maximize the number of correctly ranked events
with no misranked events

Building upon the first objective function, it is possible to define an objective

function which penalizes a PMU placement if it results in misranked events. One

such optimization definition is

()
()
()

() ()
*

, ,

1 , , , 1
, , , 1

0 , undetected given and

max , ,

max

NoMisrank

NoMisrank NoMisrank
e

NoMisrank NoMPMUSet

X e PMUSet

RankOutaged e PMUSet
RankOutaged e PMUSet
e PMUSet

ObjFunc PMUSet X e PMUSet

PMUSet ObjFunc

τ

τ

τ
τ
τ

τ
∈

=

=⎧
⎪−∞ >⎨
⎪
⎩

=

=

∑
E

()isrank PMUSet

 (5.2)

Once again, the dependence of RankOutaged on the angle threshold is made explicit

in determining RankOutaged and NoMisrankX . Unlike with the previous objective

function, the optimal value of τ for the inner maximization is not necessarily the

minimum angle change. Consider the case where there is an event (such as the outage

of one of the 18-27 lines) that is misranked no matter how many angle measurements

are taken due to failure of the dc power flow assumptions. In this case, the only way

to improve the objective function would be to stop detecting this event, which will be

the case if τ is set sufficiently high. Therefore, the inner maximization must be

explicitly calculated for this optimization problem. Fortunately, this does not pose

much of a computation burden due to the finite number of τ values which impact the

 137

results; in the worst case, the number of evaluations needed to exhaustively solve the

inner maximization is equal to the number of events.

This objective function is a significant improvement over the first, in that it

explicitly accounts for the problem of misranking by removing from consideration

any combination of PMU placement and τ that would result in a misranked event.

The number of events that share the same rank is still not accounted for, but this

optimization provides a much better match with the objectives mentioned at the

beginning of the chapter.

5.2.3 Objective 3: Maximize the number of correctly ranked events
with no misranked events and no events with the same rank

Taking the optimization problem from the previous section one step further, it is

also possible to remove any PMU set and threshold combination if it results in events

that share the same rank. The optimization to be solved in this case is:

()
()

()

()

, ,

, , , 1 and
1

(, ,) 0
, , , 1 or

(, ,) 0
, undetected given and

0

ma

NoShared

NoShared

X e PMUSet

RankOutaged e PMUSet
SharedOutaged e PMUSet
RankOutaged e PMUSet

SharedOutaged e PMUSet
e

PMUSet

ObjFunc PMUSet

τ

τ
τ
τ
τ
τ

=

=⎧
⎪

=⎪
⎪ >⎪−∞⎨

>⎪
⎪
⎪
⎪⎩

= ()

()*

x , ,

arg max

NoShared
e

NoShared NoShared
PMUSet

X e PMUSet

PMUSet ObjFunc PMUSet

τ
τ

∈

=

∑
E

 (5.3)

This is a much more restrictive objective function, in that only events which are

ranked one and have no other events sharing that rank count towards the objective

function value for a particular PMU placement. While this last objective function

 138

meets each of the objectives stated in Section 5.1, not all instances of SharedOutaged

greater than zero are problematic if visualization of the event detection is used to

present the results (e.g., in the case of parallel lines). As a result, this objective

function may result in PMU placements which are poorer than other placements from

a practical sense.

5.3 Searching Methods

5.3.1 Exhaustive search

One method of determining the optimal placement of PMUs with respect to these

objective functions is to perform an exhaustive search. This can become

computationally intractable, depending on how PMUSets is constructed. If, for

instance, PMUSets consists of all possible PMU combinations on an N-bus system,

then the number of possible PMU configurations to evaluate is:

()1 1

!
! !

N N

n n

N NPMUSets
n n N n= =

⎛ ⎞
= =⎜ ⎟ −⎝ ⎠
∑ ∑ (5.4)

Even if the number of PMUs to be placed is fixed, the size of PMUSets is likely to

make exhaustive search computationally intractable. For instance, placing 4 PMUs

on a 37-bus system requires the search of a space that is of size 66 045. If each

evaluation of the objective function is carried out in 0.5 s, then it would still take 9 h

to process the whole set of possible PMU combinations. In the results presented

below, exhaustive search was only used for the placement of up to 6 PMUs due to the

amount of time needed to perform exhaustive search. The good thing about

exhaustive search is that it is guaranteed to find the global optimal value of the

 139

objective function and all PMU placements that attain this optimal value, unlike the

simulated annealing method described in the next section.

5.3.2 Simulated annealing

An alternative method which has been used to perform large-scale combinatorial

optimization in other PMU placement applications [18, 20] is simulated annealing

(SA) [73]. This method is based on the properties of material annealing (heating and

then gradual cooling), where atoms within a material will tend to reach a globally

minimum energy state if the material is cooled slowly enough. Leveraging this idea

to perform optimization, the following algorithm is defined:

1. Initialize the algorithm temperature and configuration:

 ()

0
0

initial

Initial

max Initial

max Initial

T T
PMUSet PMUSet
f ObjFunc PMUSet
PMUSet PMUSet
StallIterations
IterationsAtTemperature

←
←

←

←
←

←

 (5.5)

2. Until exit condition is reached:

a. While IterationsAtTemperature < NumIterationsAtTemperature and

exit condition has not been met

i. Evaluate a new PMU placement:

 140

()
() ()

()
()

1

if 0

if

0

elseif

max

max

max

T

StallIterations StallIterations
PMUSet Neighbor PMUSet

ObjFunc PMUSet ObjFunc PMUSet

PMUSet PMUSet
ObjFunc PMUSet f

f ObjFunc PMUSet
PMUSet PMUSet
StallIterations

e Uni
Δ⎛ ⎞

⎜ ⎟
⎝ ⎠

← +
′←

′Δ ← −

Δ >
′←
′ >

′←

′←
←

> []()0,1form

PMUSet PMUSet′←

 (5.6)

ii. Check for exit condition

if

exit algorithm
StallIterations StallIterationsMax=

 (5.7)

iii. If exit condition has not been met, increment

IterationsAtTemperature:

 1IterationsAtTemperature IterationsAtTemperature← + (5.8)

b. Update the temperature and reset IterationsAtTemperature

0.99

0
T T
IterationsAtTemperature
← ×

←
 (5.9)

The algorithm parameters which have not been previously defined are as follows:

• T, initialT : T is the current “temperature” in the optimization. High

temperatures correspond to hot materials in which the atoms or molecules can

move around freely, whereas low temperatures correspond to cold materials

where movement is restricted to those movements which will directly lower

the energy of the system. The key feature of simulated annealing is that it

allows for suboptimal changes in the current PMUSet so that the algorithm

 141

does not get stuck in local maxima, as would be the case using a pure hill-

climbing algorithm such as steepest ascent. The mathematical model of this

behavior is represented by the conditional acceptance of poorer PMU

placements in (5.6) based on the Boltzmann distribution. initialT , the initial

value of the temperature, is chosen so that essentially any change in the PMU

placement is accepted at the start of the algorithm. For the results presented

below, this was set to 10 times the minimum of P, the number of PMUs in the

placement set, and N – P, the number of buses without PMUs.

• IterationsAtTemperature, NumIterationsAtTemperature: The

IterationsAtTemperature counter keeps track of how many PMUSet’s are

tested at the current temperature. After NumIterationsAtTemperature

PMUSet’s have been tested at a given temperature, the temperature is

adjusted. Several iterations need to be run at each temperature to allow the

current state of the system to settle into the probability distribution associated

with a given temperature [73]. For the results presented below,

NumIterationsAtTemperature was set to the minimum of P, the number of

PMUs in the placement set, and N – P, the number of buses without PMUs.

• InitialPMUSet : An initial guess at what the optimal PMU placement should be;

for a finite number of PMUs, the only restriction is that the reference bus is

within this set and that the cardinality of the set is the number of PMUs to be

placed. For the results presented below, this was set to include PMUs at the

 142

referenced bus and P-1 other buses chosen at random, where P is the number

of PMUs to be placed.

• ObjFunc: One of the three objective functions defined in Section 5.2.

• StallIterations: Keeps track of the number of iterations since the last increase

in the objective function due to a new optimal PMU placement set.

• StallIterationsMax: The maximum number of iterations allowed after the last

increase in the objective function before the algorithm exits. In generating the

results presented below, this was set to 1000 times the minimum of P, the

number of PMUs in the placement set, and N – P, the number of buses without

PMUs. The main purpose of setting this to a high number is to ensure the

local maximum is attained as the temperature reaches low values.

• ()Neighbor PMUSet : A function which takes a PMU placement set and

returns a new PMU placement set which is a variation on the previous set. For

the results presented below, this function randomly selects a PMU from a

nonreference bus and moves it to an adjacent bus without a PMU, where two

buses are adjacent if there is a line connecting the buses.

• maxPMUSet , maxf : The best PMU placement set found at any point during the

run of the algorithm, and the optimal objective function value associated with

the best PMU placement set.

• []()0,1Uniform : A sample from the uniform distribution with a lower bound

of zero and upper bound of one.

 143

Using these parameters, SA produces a PMU placement set maxPMUSet which

would ideally be equal to the true optimal *PMUSet . There is no guarantee that the

SA algorithm will reach the true optimal, but as shown in the results below the

algorithm does a good job of finding an objective function maximum that is close to

the true optimal while drastically reducing the amount of computation needed relative

to exhaustive search.

5.4 Results for Optimal PMU Placement to Detect Single-
Line Outages

As mentioned in the beginning of Section 5.2, the impact of filtering can be

neglected in the placement problem by first determining observedθΔ for each outage

using a high order filter of the simulated angles and calculating the changes in angles

several seconds after the outage occurs. Using these observedθΔ values, RankOutaged,

AboveThreshold, and SharedOutages are determined for a given PMU placement set

PMUSet and angle threshold τ . These quantities were evaluated using the methods

described in Section 3.2 and then used to evaluate the objective functions defined in

Section 5.2. Exhaustive search was used for the placement of three and six PMUs,

and SA was used for placement of 3, 6, 9, 18, and 27 PMUs. SA was run three times

for each PMU placement problem, and the best result is reported below. The

computation time given in the results tables for SA includes all three runs of SA.

 144

5.4.1 Three PMUs placed by exhaustive search and simulated
annealing

The first set of results looks at the optimal placement of three PMUs on the

system with each objective function using both exhaustive search and simulated

annealing. The total number of possible PMU placements for three PMUs is 630.

Table 5.1: Placement of three PMUs using exhaustive search and SA

Objective
function

Search
method

Highest
objective

function value

Corresponding
PMUSet(s)

Time taken to
perform

optimization
(seconds)

1RankObjFunc Exhaustive 40 {18, 31, 37} 1.31

1RankObjFunc SA 40 {18, 31, 37} 42.71

NoMisrankObjFunc Exhaustive 15 {1, 9, 31} 1.29

NoMisrankObjFunc SA 14 {12, 31, 32} 42.03

NoSharedObjFunc Exhaustive 3

{1, 13, 31}
{1, 28, 31}
{1, 38, 31}
{5, 13, 31}
{13, 18, 31}
{13, 21, 31}
{13, 28, 31}
{13, 37, 31}
{13, 38, 31}
{13, 48, 31}
{17, 38, 31}
{19, 38, 31}
{21, 38, 31}
{28, 30, 31}
{28, 33, 31}
{38, 48, 31}

1.58

NoSharedObjFunc SA 3
{13, 31, 37}
{13, 31, 48}
{17, 31, 38}

43.31

As seen in Table 5.1, for the 1RankObjFunc objective function both SA and

exhaustive search determine the global optimal of {18, 31, 37} which results in 40

outages being ranked correctly. The time taken to perform the optimization is much

lower for exhaustive search in this case due to the small number of possible

configurations for a 37-bus case. The results for the other two objective functions are

 145

also shown in Table 5.1; the SA results are slightly suboptimal for one of the

objective functions, NoMisrankObjFunc , and the time to perform the optimization is

significantly higher, indicating that for very small PMU deployments on this system

simulated annealing is not as efficient as exhaustive search. Also noteworthy is the

large number of PMU placements that optimize the NoSharedObjFunc objective

function. Because so many of the PMU sets optimize this objective, SA can easily

find optimal PMU placements, and this is reflected in the fact that all three runs of SA

result in optimal PMU placements. The NoSharedObjFunc results also illustrate a key

shortcoming of SA—namely, that it does not provide an exhaustive list of optimizing

placement sets, whereas exhaustive search does.

5.4.2 Six PMUs placed by exhaustive search and simulated annealing

Next, the placement of six PMUs on the system is examined using both

exhaustive search and simulated annealing. Placing six PMUs pushes the bounds of

how many PMUs can be placed in a reasonable amount of time with exhaustive

search; doing the same search for seven PMUs would take approximately four times

longer, resulting in search times on the order of hours rather than minutes. Going

beyond seven PMUs would require days of computation if exhaustive search were

used.

The results shown in Table 5.2 illustrate the difference in computation time for

SA relative to exhaustive search—there is a roughly fivefold decrease in computation

time. This shows that SA scales much better with the number of PMUs to be placed

than exhaustive search does. In addition, SA has many more parameters which can be

 146

tweaked, particularly the exit condition StallIterationsMax, which can be modified to

reduce this computational time.

Table 5.2: Placement of six PMUs using exhaustive search and SA

Objective
function

Search
method

Highest
objective
function

value

Corresponding
PMUSet(s)

Time taken to
perform

optimization
(seconds)

1RankObjFunc Exhaustive 49 {1,3,5,21,55,31} 589.95

1RankObjFunc SA 46 {3,5,10,21,31,54}
{13,21,24,31,34,37} 98.04

NoMisrankObjFunc Exhaustive 31 {10,15,21,48,56,31} 620.55

NoMisrankObjFunc SA 21 {12,24,28,30,31,40} 90.03

NoSharedObjFunc Exhaustive 9
{1,21,24,28,38,31}
{1,24,28,38,48,31}
{1,24,28,38,53,31}

710.72

NoSharedObjFunc SA 8 {19,28,30,31,38,48} 118.15

Table 5.2 also showcases the other main issue in using an approximate optimizer

such as simulated annealing—the SA result is suboptimal for all three objective

functions, and is significantly suboptimal for the NoMisrankObjFunc objective function.

One possible reason for this behavior is that the objective function has infinitely steep

derivatives in the presence of misranked events. This can prevent the SA algorithm

from transitioning between configurations, particularly as the temperature gets low

and the algorithm stops allowing suboptimal transitions. One solution would be to

reformulate the objective function so that the penalty for having misranked events is

less than infinity, although the choice of penalty would have to be tailored to each

system and event set in order to continue avoiding misranking. Another option would

be to try additional combinatorial optimization methods (e.g., genetic algorithms [74],

particle swarm [75], or a hybrid of several methods as in [76]). Ultimately, there is no

 147

way to avoid the fact that with an extremely large search space tradeoffs must be

made between computational effort and optimality.

5.4.3 Higher numbers of PMUs placed by simulated annealing

The final set of results illustrate the performance of SA for the placement of

PMUs in which exhaustive search is computationally infeasible. SA was run once for

each combination of objective function and number of PMUs P. The results of these

runs are given in Table 5.3. The steady increase in optimal values of the three

objective functions indicates that SA is finding better PMU placements as the number

of PMUs increases. This fits well with the results from Section 4.1.1.2, where the

reduction in PMUs from 37 to 18 led to slightly poorer rankings and more events with

nonzero SharedOutaged values. Moreover, these results show that if 27 PMUs are

placed on this system, there exists a PMU placement and angle threshold such that 51

of the 56 events are correctly detected without any misrankings. This confirms the

usefulness of the single-outage detection algorithm for reduced PMU placements,

particularly if misranking is to be minimized. Also, although these results are based

on the dynamic simulations with the initial conditions given in 0, running SA with

different system configurations (e.g., summer peak, winter peak, midday, midnight,

etc.) would be feasible due to the small amount of time needed to perform the search.

On the other hand, testing a wide variety of system configurations would be

prohibitively expensive from a computation standpoint if a more exhaustive search

approach is used.

 148

Table 5.3: Placement of 9, 18, and 27 PMUs by simulated annealing

Objective
function

Number of
PMUs (P)

Highest
objective
function

value

Time taken to
perform

optimization
(seconds)

1RankObjFunc 9 47 65.33

NoMisrankObjFunc 9 26 56.41

NoSharedObjFunc 9 11 55.74

1RankObjFunc 18 52 148.76

NoMisrankObjFunc 18 38 121.96

NoSharedObjFunc 18 24 172.83

1RankObjFunc 27 54 76.52

NoMisrankObjFunc 27 51 62.87

NoSharedObjFunc 27 37 84.99

 149

6 GPU-BASED VISUALIZATION OF PMU DATA

6.1 Overview

The high data rate of phasor measurement units requires sufficiently fast

rendering if real-time visualization is to be achieved. Graphical processing units

(GPUs) have shown remarkable progress in the past decade, providing unprecedented

computational power and programmability for advanced graphics applications. The

use of GPUs to render PMU data is a natural fit between the high data rate of PMUs

and the high rendering rate of GPU-based visualization algorithms. Accordingly, two

applications have been developed and are presented in the remainder of this chapter.

The first section considers how one of the more common visualization techniques, bus

data contouring, can be significantly accelerated by using GPU rendering. The

second section discusses some additional processing of the data that can make the

data visualization more content-rich. Analysis of these techniques shows how

combining cutting-edge visualization techniques with cutting-edge measurement

techniques can provide significant improvements in situational awareness.

6.2 Implementation of Contouring on the GPU

6.2.1 Introduction to contouring on the GPU

Based on the recommendations of the August 2003 blackout report [1], a heavy

emphasis has been placed on improving situational awareness in control centers

around the world. One visualization technique which has been used to increase

situational awareness has been contouring [40]. This technique, also known as

scattered data interpolation (see [77] for a survey of the state-of-the-art), aims to

 150

provide a weather-map-like visualization of the power grid, showing various bus- or

substation-based data throughout an area of interest. This type of visualization has

been used in many different fields, e.g., meteorology [78] and medical imagery [79],

and its usefulness has been demonstrated for power system applications through

human factors testing [42].

One key similarity between the methods used to generate power system contours

in the past has been a reliance on the CPU to do the necessary contour calculations.

CPUs, which are optimized for general purpose computing, are not well-suited for the

parallel calculations that are inherent in some contouring algorithms. Several

incremental improvements have been made, but CPU-based contouring is

fundamentally constrained by the serial nature of CPU program execution. On the

other hand, graphics processing units (GPUs), which are present in most modern

computer systems, are ideally suited to the computations needed to generate contours

because of the parallel nature of GPU program execution. Furthermore, some work

has already been done in demonstrating the effectiveness of using GPUs to perform

real-time interpolation of three- and four-dimensional data [48]. This work suggests

that there is a potentially large benefit to using GPUs in two-dimensional power

system contours.

In order to investigate the possible performance gains of using GPU- rather than

CPU-based contouring for power system visualizations, a prototype GPU-based

contouring algorithm has been developed. The remainder of this chapter discusses

this work, and is divided into several sections. Section 6.2.2 provides a brief

 151

overview of the contouring problem. Section 6.2.3 discusses some of the fundamental

aspects of GPU programming, while Section 6.2.4 provides the algorithm and

implementation details. Section 6.2.5 provides some performance results for

contouring a real power system area as parameters such as influence radius and

contour resolution are varied. Section 6.2.6 discusses some of the key advantages and

disadvantages of moving contouring to the GPU, and Section 6.3 details several

benefits and potential applications of GPU-based contouring.

6.2.2 Contouring background

Formally, the purpose of contouring (or scattered data interpolation) in the power

system context is to find a function (),F x y such that for each bus k , located at

position (),k kx y ,

 (),k k kF x y f= (6.1)

where kf is the value to be contoured (e.g., voltage), known to be a specific value at

each bus k . This value is typically obtained from a state estimator or directly from a

measurement device such as a PMU. There are an infinite number of possible

functions that can satisfy this constraint, so additional restrictions are useful in

reducing the set of possible functions. One additional constraint imposed on F in

this application is that F must be “smooth,” i.e., continuous and once differentiable

[80].

While there are many different methods which can be used to determine the

contouring function F (see [77]), this work focuses on inverse distance weighted

methods due to their intuitive nature and ease of parallelization. The intuition behind

 152

inverse distance weighted methods is that the function value at any point should be

the weighted average of all points with known values. In this method of contouring,

the function F is defined as follows:

 ()
()

()
1

1

,
,

,

N

k k
k

N

k
k

w x y f
F x y

w x y

=

=

=
∑

∑
 (6.2)

where (),kw x y is known as the weighting function. The weighting function first

proposed for this scheme, which gives rise to the contouring algorithm known as

Shepherd’s method [81], is

() ()

()

2 2

, 2

1,

k k k

k SM
k

d x x y y

w x y
d

= − + −

=
 (6.3)

This weighting function gives a nonzero value of (),kw x y for all values of x and y .

Because each bus k has a nonzero contribution to every point on the screen, using the

weighting function of Equation (6.3) is characterized as a global contouring

algorithm.

Global methods such as Shepherd’s method are computationally burdensome due

to the need to consider each bus’s contribution at each pixel on the screen. As a

result, several local methods have been proposed in the literature [80]. For the

implementation of contouring on the GPU, the local weighting function developed by

Franke and Little is used:

 ()
()

2

,
,

,

0 ,

k
k

k FL k

k

R d
d R

w x y Rd
d R

⎧⎪⎡ ⎤−⎪⎢ ⎥⎪ <⎪⎢ ⎥=⎨⎣ ⎦⎪⎪⎪ ≥⎪⎩

 (6.4)

 153

where kd is defined in (6.3). For this local weighting function, only pixels within a

distance R of bus k will be affected by the value kf . This weighting function also

maintains continuity and first-order differentiability of the interpolating function F

[82] and reduces to the weighting function of (6.3) as R →∞ .

Figure 6.1: The GPU rendering pipeline.

6.2.3 GPU Programming [83]

6.2.3.1 The rendering pipeline

GPU programming is significantly different from CPU programming, and this

must be taken into account when adapting any algorithm for GPU implementation.

The basic GPU pipeline, illustrated in Figure 6.1, was originally constructed to

efficiently render polygons, lines, and points to a graphical display. The basic steps in

the GPU rendering pipeline are [83] as follows:

1. Polygon vertex coordinates, viewable area definitions, color values, texture

coordinates, and textures are sent to the GPU via OpenGL calls from the CPU.

 154

2. The vertex processor transforms coordinates defined via function calls from

the CPU in step 1 into coordinates relative to the display. Also, vertices are

grouped into primitives (points, lines, and triangles) for the later stages of the

pipeline.

3. The Cull / Clip / Setup stage takes the primitives that are output from the

vertex processor and removes unviewable objects. Also, any primitives that

are only partially inside the viewable area are clipped.

4. The rasterization stage determines which fragments are covered by each

primitive. Fragments are the rasterized pieces of the polygon and correspond

to a single pixel of the final output. Also, per-vertex values such as colors and

texture coordinates are linearly interpolated across each primitive and assigned

to each enclosed fragment.

5. The fragment processor runs on each fragment, performing texture lookups

and determining the final color that the fragment will be. For this contour

implementation, two nondefault fragment processors are used to change the

behavior of this step.

6. Once fragment colors have been assigned by the fragment processor, several

tests (e.g., stencil and z-compare) are run on the fragments to see if they

should be discarded. If the pixel passes all tests, then it is blended with the

current framebuffer entry at its location and the final pixel value is written to

the framebuffer. This write to the framebuffer is the final stage of the

OpenGL pipeline. For traditional graphics applications, the framebuffer

 155

represents the pixels on the current video display. Framebuffer objects

(FBOs) make it possible to draw into a texture in video memory rather than

directly to the video display [84]. This texture can then be read back on a

subsequent rendering pass. This technique is used in the GPU-based

contouring implementation, as discussed below.

6.2.3.2 Important fragment processor characteristics

Two of the programmable units on the GPU are the vertex processor and the

fragment processor, which allow for custom processing of vertices and fragments in

stages 2 and 5 of the graphics pipeline. The default vertex processor is used in the

contouring implementation, so it is not discussed any further. On the other hand, two

custom fragment processors are used for contour generation.

One important aspect of fragment processor programming is that there can be

fragments at different stages of the pipeline at any given time. As a result, the

fragment processor is not allowed to write to any locations in video memory except

for the framebuffer at the end of stage 5. Otherwise, each fragment might have to

wait for another fragment to complete its processing before it can be sent out to the

framebuffer. In other words, if the framebuffer is conceptualized as an array of bytes,

then the fragment processor can only output data to one particular array index in the

framebuffer, and this array index cannot be changed from within the fragment

processor. Although it cannot write directly to texture memory, the fragment

processor is capable of reading directly from texture memory; in fact, this is how

traditional polygonal texturing is performed for graphics applications. Because of

 156

these features, it is helpful to think of a fragment processor as having a large set of

memory addresses it can read from, and only one memory address it can write to, with

no overlap between these address spaces. This is fundamentally different from CPU

programs, where programs routinely read and write to the same memory address.

Although fragment processors must be programmed with a restrictive set of

operations, particularly when it comes to memory reads and writes, their sheer

processing power makes them ideal for speeding up computations that can be

performed in parallel. For instance, modern GPUs such as the NVIDIA GeForce 7-

series used in these experiments are capable of performing over 165 billion floating

point operations per second (gigaflops or Gflops), whereas a CPU of the same

generation, such as a dual-core Pentium 4, is only capable of around 24.6 Gflops [45].

More advanced chips, such as the recently released GeForce 8800 GTX, have

theoretical processing speeds in excess of 500 Gflops. For cases where the GPU can

be run near its processing limits, this difference in processing power allows GPUs to

easily outperform CPUs.

There are two key issues involved in fully taking advantage of the GPU’s

computational power. First, memory reads should be performed as sequentially as

possible in order to take advantage of hardware caches built into the GPU. The GPU

contouring implementation is designed to ensure coherent texture reads by making all

reads from rectangular textures, where each texel is accessed in a sequential fashion

from the top-left to the bottom-right. The other key issue in programming for the

GPU is to use algorithms which are computationally limited (as opposed to I/O

 157

limited). Contouring algorithms clearly fall into this category, as the bulk of the time

spent in creating a contour is based on the need to evaluate (6.4) for each pixel within

the influence region of each bus. Also, because the processing elements of the GPU

work in parallel, defining the algorithm using for/next loops allows for simple

implementation as a fragment processor program.

6.2.4 Algorithm definition and implementation details

6.2.4.1 Definition of the contouring algorithm

Based on Equations (6.2) and (6.4), one definition of the contouring algorithm

which is well-suited for GPU implementation is as follows:

1. For each point (),x y

1.1. (), 0N x y ←

1.2. (), 0D x y ←

1.3. (), 0F x y ←

2. For each bus k

2.1. For each point (),x y such that (), , 0k FLw x y ≥

2.1.1. () () (),, , ,k FL kN x y N x y w x y f← +

2.1.2. () () (),, , ,k FLD x y D x y w x y← +

3. For each point (),x y such that (), 0D x y >

3.1. () ()
()

,
,

,
N x y

F x y
D x y

=

4. For display to the screen, each value of F is mapped to a color as discussed in

[40] and stored as the color value for point (),x y .

 158

Table 6.1: Algorithm implementation on the CPU and the GPU

Algorithm
Steps CPU Implementation GPU Implementation

1
Allocate space for N
and D in main system
memory.

Allocate space for AccumTexture and
ContourTexture on the GPU.

2

For each bus, calculate
and store the numerator
and denominator values
within each bus’s
influence region.

Draw a circle of radius R around each bus
with the video output redirected to
AccumTexture. Use a custom fragment
shader to calculate and store the N values in
the red channel and the D values in the green
channel. Use additive blending to perform
accumulation as each bus is drawn.

3

Iterate through each
element in the N and D
arrays and divide the
numerator by the
denominator. Look up
the corresponding color
in the color map and
write this color to a
bitmap.

Draw a rectangle of size Res with its texture
set to AccumTexture and the video output
redirected to ContourTexture. Using a
custom fragment shader, divide the red
channel values of AccumTexture by the green
channel values. For each pixel, look up the
corresponding color in the color map and
write this color to ContourTexture.

Each of the algorithm steps given above can be translated into a set of

instructions on the CPU or GPU, as shown in Table 6.1. For the GPU

implementation, the C programming language was used with the GLUT library [85]

for OpenGL programming and the Cg language was used for fragment processor

programming [86]. The implementation of the algorithm was split into three stages,

explained in detail below.

6.2.4.2 Implementation step 1—allocation of textures and framebuffer objects

To begin, texture memory is allocated for two textures: AccumTexture and

ContourTexture . AccumTexture is created as a GL_RGBA16F_ARB formatted

texture, which allocates four components (red, green, blue, and alpha) for each texel.

Each component stores an IEEE-formatted 16-bit floating point value.

ContourTexture is allocated as a standard 32-bit texture containing 8-bit red, green,

 159

blue, and alpha components for each texel. AccumTexture stores (),N x y in its red

channel and (),D x y in its green channel. ContourTexture stores the finished, color-

mapped contour as a texture which can then be rendered to the display. Both textures

are created with the same dimensions, denoted as Res . This size is the resolution of

the contour to be created (e.g., if a contour is to be created which exactly fits into a

640 480× window, then the two textures will have dimensions 640 480×). Because

the algorithm requires rendering to these textures rather than simply reading from

them, a framebuffer object is created that allows the GPU to write to the textures [84].

The framebuffer objects used to write to each texture are named AccumFBO and

ContourFBO. The allocation of texture memory occurs only when the desired

contour resolution changes (typically when a window is resized), which reduces the

amount of time spent allocating memory on the GPU.

6.2.4.3 Implementation step 2—accumulation of the numerator and
denominator values for each pixel

Once the textures are allocated, AccumFBO is set as the output framebuffer for

the GPU. By setting AccumFBO as the output location, all pixels drawn by the GPU

are sent to AccumTexture rather than the video display. After AccumFBO is

attached, glClear() is called, which performs steps 1.1 and 1.2 of the algorithm by

clearing the red and green channels of AccumTexture. Next, a custom fragment

processor is bound to the GPU that takes as arguments the position of the bus that is

currently being drawn, (),k kx y , and writes out the values (), ,k FL kw x y f to the red

channel and (), ,k FLw x y to the green channel. The final setup step is to enable

additive blending on the GPU, which performs the assignment and sum operations

 160

needed in steps 2.1.1 and 2.1.2 of the algorithm. Once all the setup operations are

completed, for each bus k , a circle of radius R is drawn around the point (),k kx y .

After this has been done for each bus in the system, the red channel of AccumTexture

contains (),N x y and the green channel contains (),D x y for all points in the

contour.

6.2.4.4 Implementation step 3—evaluation of the interpolating function and
color mapping

For the next step in the contouring process, ContourFBO is attached as the

render target for the GPU. A call to glClear() is then made to execute step 1.3 of the

algorithm. Next, AccumTexture is set as the current texture to be read within the

fragment processor of the GPU. A custom fragment program is then bound to the

GPU which performs steps 3.1 and 3.2. Finally, a rectangle of size Res is drawn with

texture coordinates assigned so that each point in AccumTexture corresponds to one

output pixel. Once this draw operation has completed, ContourTexture contains the

color-mapped contour. This texture can then be drawn to the screen by binding

ContourTexture as the current texture and rendering an appropriately sized rectangle

using the default fragment processor.

6.2.5 GPU-based contouring algorithm performance results

For the results given below, the test system used consisted of an AMD Athlon 64

X2 Dual Core 3800+ CPU with an NVIDIA GeForce 7600 GT GPU. Timings for the

GPU algorithm were determined using the high-resolution Windows performance

counter [87], with an average taken over 100 contour renderings.

 161

Figure 6.2: One-line diagram of contour area.

The power system one-line diagram used as the basis for the results and figures

shown below is provided in Figure 6.2. The number of buses that influence the

contour area ranges from 199 (for an influence radius of 1) to 818 (for an influence

radius of 400). The data that is contoured is the per unit voltage level at each bus.

The color map used to convert voltage levels to colors is shown in Figure 6.3.

Figure 6.3: Contour color map relating per unit voltage to displayed color.

6.2.5.1 The effect of changes in Res

There are two key parameters which affect the performance of the contouring

algorithm. The first of these parameters, Res, controls how large a contour image to

create. For the highest-quality contour, Res should be set to the same size as the

screen area the contour covers upon final rendering to the video display. However,

 162

reducing Res to a smaller value results in a decrease in rendering time; therefore, a

tradeoff must sometimes be made between contour resolution and rendering speed.

To explore the effects of varying Res, the system was contoured with several different

resolution levels. In these tests, R, the radius of influence, was held at a constant

value of 100. Figure 6.4 shows an example contour rendering with Res set to

1024 768× .

Figure 6.4: Contour rendering with resolution set to 1024x768, radius of influence set
to 100.

Table 6.2 shows the timing results obtained for various contour resolutions. In

order to gauge the performance of the algorithm in a typical control room setting,

resolutions were chosen which are commonly used in both projection and

conventional video displays.

 163

Table 6.2: Timings for seven contour resolutions with the influence radius set to 100

Res

Width Height Common Name Time to render a contour (seconds)
3840 2400 WQUXGA 0.938
1920 1200 WUXGA 0.249
1600 1200 UXGA 0.208
1280 1024 XGA+ 0.150
1024 768 XGA 0.100
800 600 SVGA 0.066
640 480 VGA 0.050

Figure 6.5: Effect of contour resolution on contour rendering times.

Figure 6.5 illustrates the effect on rendering time as the contour resolution is

varied. The x-axis is the number of megapixels associated with each tested

resolution, and the y-axis is the amount of time it takes to render one contour. The

linear relationship between resolution and rendering time indicates that the time

required to render a particular contour is on the order of the number of pixels in the

contour. The fact that this linear relationship holds for resolutions ranging from

 164

640 480× all the way up to 3840 2400× indicates that the algorithm does not suffer

from scalability issues.

It is also worthwhile to consider the visual impact of changing the contour

resolution. For a given screen size ScreenRes , the highest quality contour would be

obtained by setting ScreenRes Res= , assuming the contour takes up the entire screen

display. However, by setting ScreenRes Res< , the speed at which the contour is

rendered can be greatly accelerated. In addition, rendering the contour at a lower

resolution is not necessarily noticeable. Finally, the usage of advanced texture

filtering methods can also help to improve the rendered quality of a lower resolution

contour.

6.2.5.2 The effect of changes in R

The other key parameter which affects contour accuracy and rendering speed is

the radius of influence, R . Because a circle of radius R is drawn around each bus

(i.e., each bus affects a locus of points of radius R around its location), the contour

rendering time should scale in proportion to the area of the circle drawn around each

bus, i.e., quadratically in R . However, for a contour with a finite area, this

relationship does not always hold.

Figure 6.6 illustrates a simple three-bus contouring example where the

relationship between R and the number of processed fragments is not quadratic. The

left side of the figure shows the case where the circles of radius 1R drawn around

buses 1 and 2 fit entirely within the contour area, whereas the circle around bus 3 is

entirely outside the contour area. Because the circle drawn around bus 3 does not

 165

intersect the contour area, there is no need to draw the circle around bus 3. On the

right side of the figure, as the radius is increased to 2R , the circles surrounding all

three buses are partially inside of the contour area. In this case, a circle is drawn

around each bus, but the GPU clips away the portions of each circle that lie outside

the contour area before the fragment processor stage [83]. As a result, steps 2.1.1 and

2.1.2 of the algorithm are skipped for the darkened areas of each circle. Based on

Figure 6.6, it is clear that linear increase in the influence radius will cause a quadratic

increase in computation time only if the set of buses influencing the contour area does

not change and all bus influence regions are entirely enclosed in the contour area.

Otherwise, the increase in computation time is dependent on the characteristics of the

area being contoured and the distribution of the influencing buses.

Figure 6.6: Effect of fragment culling on radius of influence effects.

To examine the effect of changing the influence radius, several timing

measurements were taken with a fixed contour resolution of 1024×768 while R was

 166

varied from 1 to 400. The results of these tests are given in Table 6.3. In addition,

Figure 6.7 illustrates the complex relationship between the radius of influence and the

time to construct a single contour.

Table 6.3: Timing results for several values of influence radius with a constant
contour resolution of 1024×768

R

Number of
buses

influencing the
contour area

Time to render a
contour (seconds)

1 199 0.0225
5 206 0.0227
10 221 0.0229
25 274 0.0249
50 367 0.0361
75 438 0.0665
100 485 0.1001
125 514 0.1331
150 580 0.1838
200 653 0.2669
300 753 0.4251
400 818 0.4994

Figure 6.7: Effect of influence radius on contour rendering time with contour
resolution set to 1024×768.

 167

For the first few values of influence radius—1, 5, and 10—the time to render a

contour is basically constant. This indicates that for very low influence radii, the time

spent rendering a contour is based more on other factors (such as the texture lookups,

OpenGL calls, etc.) than on the processing time needed to construct the contour. As

the influence radius increases to values between 10 and 150, a quadratic relationship

is evident. For radii greater than 150, a much more complicated relationship is

demonstrated that confirms the behavior discussed above and illustrated in Figure 6.6.

As with the other tunable parameter Res, there is a tradeoff between how large of

an influence radius is used and how fast the contours are rendered. In general, the

proper choice of R will be dependent on many factors, including the density of buses

within the power system under study. In fact, this is one justification for the usage of

dynamic influence regions when contouring power system data, as discussed in [44].

To illustrate the visual impact of changing the influence radius, Figure 6.8 shows

how reducing the influence radius from 100 to 25 affects the contour shown in Figure

6.4. In Figure 6.8, it is very easy to distinguish the circles that surround each bus, and

the silhouette of the contour is a series of arc segments, typical for contours with

relatively low influence radii. On the other hand, in Figure 6.4, a much smoother

contour is shown with no obvious circles present. Ultimately, the individual using the

contour must decide which value of R provides a good representation of the

underlying data without sacrificing too much in terms of rendering speed.

 168

Figure 6.8: Contour rendering with resolution set to 1024×768, radius of influence set
to 25.

6.2.6 Advantages and disadvantages of GPU-based contouring
versus CPU-based contouring

Because implementation of a GPU-based contouring algorithm can require

significant expenditure of time and resources, it must be justified as an alternative to

current CPU-based contouring methods. The greatest benefit of moving contouring to

the GPU is the decrease in rendering time for contours. For example, contouring the

power system area in Figure 6.2 using a resolution of 640×640, with a radius of

influence of 150, the GPU-based contour takes 0.102 s to render. Rendering the same

contour using the CPU (with the method outlined in [44]) takes 5.10 s.

The rendering speeds of CPU-based contouring methods are significantly slower

than GPU-based methods for several reasons. First, CPUs are designed to process

instructions in a serial fashion, rather than for parallel operations. GPUs, on the other

 169

hand, have always been built to process multiple vertices and fragments in parallel to

quickly render polygons to the screen. For instance, the NVIDIA GeForce 7600 GT

GPU used in the above tests has 12 fragment processors, each capable of performing

steps 2.1.1 and 2.1.2 of the algorithm independently. On a CPU, each of these

operations must be performed serially. Secondly, modern CPUs typically have a 6.4-

GB/s memory bandwidth, whereas modern GPUs have memory bandwidths of 32

GB/s and higher [83]. As a result, reading and writing to memory locations can occur

at a much faster rate on the GPU. Finally, the clipping operations built into GPUs are

able to efficiently exclude calculations that do not influence the contour plot (e.g.,

calculations on the shaded pixels in Figure 6.6). On the other hand, when using a

CPU to perform contouring, the effects of clipping at the contour boundaries must be

explicitly calculated. Another key benefit of using GPUs for contouring is that the

CPU is then freed up to perform tasks better suited for CPU computation. For

instance, while the CPU is used to calculate load flows or perform filtering

operations, the GPU can independently construct and render a contour with limited

CPU interaction.

GPU-based contouring also has several disadvantages when compared to CPU-

based contouring. The greatest potential disadvantage to using GPU-based

contouring is the potential loss in accuracy due to floating point errors. Although

many of the latest GPUs support 32-bit operations within the fragment and vertex

processors, using 32-bit floating point incurs a performance penalty relative to 16-bit

operations. Another potential difficulty with using 32-bit floating point textures is

 170

that blending of 32-bit floating point values, needed to implement steps 2.1.1 and

2.1.2 of the algorithm, is only possible on the very latest (and most expensive) video

cards such as the NVIDIA GeForce 8- and 9-series. Usage of older GPUs with 16-bit

precision can lead to numerical instability, a problem which does not occur with

modern CPUs that are capable of handling arbitrarily high precision floating point

values.

Another potential problem with using GPU-based contouring is the wide variety

of capabilities of GPUs. Although there are some standards for GPU

programmability as defined by the OpenGL Architecture Review Board, it is

nontrivial to write a GPU contouring program which takes advantage of all GPUs

equally. For instance, writing textures with an NVIDIA GPU is optimized for a

different set of OpenGL instructions than an ATI GPU. CPUs do not typically suffer

as much from this difficulty due to the existence of well-established instruction sets.

6.3 Benefits and Applications of Accelerated Contouring

6.3.1 Improvements in usability

The ability to render faster contours is not inherently useful; the usefulness comes

from the improvements in usability and new applications which are enabled by the

faster rendering rates. Two key criteria used to evaluate a system’s usability are the

efficiency of the interface, typically measured by the amount of time needed to

complete a specific task, and user satisfaction in using the interface, which can be

measured by both subjective and objective means [88]. The improvements in contour

rendering times facilitated by using the GPU impact both of these criteria.

 171

6.3.1.1 Improvements to user efficiency

There are two common tasks which are typically used interact with a power

system contour—navigation and changing of contour parameters. The first of these

tasks, navigation, consists primarily of zooming and panning the contour area. For

example, if an operator wants to see a more detailed voltage contour within a

particular area, the operator must first select the area of detail and then wait for the

contour to be rendered again. As mentioned above, CPU-based contouring can take

up to five times as long as GPU-based contouring of the same area. In terms of user

efficiency, this means that after the user has signaled to the software that the contour

area needs to change, it takes a significantly longer time for CPU contouring to catch

up with the user’s request. As a result, using GPU-based contouring can significantly

improve the efficiency of users’ interactions. Furthermore, any attempt by the user to

fine-tune either zooming or panning is better facilitated by the rapid contouring

speeds enabled by the method presented in Section 6.2.

Changing contouring parameters such as influence radius, resolution, and color

mapping are also ways in which users interact with contours to better highlight certain

aspects of the underlying data. For example, if a color mapping is initially defined for

a range of 0.95 to 1.05 per unit voltage, it may be necessary to change the range to

highlight areas where the voltage is lower than 0.95 or higher than 1.05. The speed at

which the contour can be regenerated directly impacts the amount of time it takes for

any such changes to take effect. Therefore, this is another type of task in which

improvements to contour rendering can significantly increase the efficiency of using

contours to understand power system behavior.

 172

6.3.1.2 Improvements to user satisfaction

It has been shown in many previous studies that frame rate is directly related to

the both performance and satisfaction of users when interacting with computer

systems (see [49] for a survey of more than 50 such studies). Figure 3 in [49], which

summarizes the satisfaction findings from 16 different studies, shows that the lowest

acceptable refresh rate over a wide variety of tasks is 5 Hz. Meeting this target would

require contour rendering that takes 0.2 s or less, a goal that is not easily achievable

with CPU-based contouring. One way to get these speeds using CPU contouring is to

reduce the contour resolution, but evidence suggests that lowering resolution can have

as much of an impact on user satisfaction as having a low frame rate [89]. Because

GPUs allow contours to be rendered an order of magnitude faster than CPU contours,

there should be a marked increase in user satisfaction if contouring is performed on

the GPU instead. In addition, one study suggests that increasing the frame rate can

actually reduce the stress of operators using the visualization [90], which can be

particularly important if the system operators are already in a state of heightened

stress due to poor system conditions.

6.3.2 Visualizing faster data

Because the rendering times for contours using GPUs are very short, it should be

possible to display data that arrives at a much faster rate than if CPU-based

contouring is used. Using the aforementioned rendering times of 0.102 s and 5.10 s

for GPU- and CPU-based creation of a single contour, the CPU-based method could

only keep up with a data rate below 0.2 Hz, whereas the GPU-based contouring

method could keep up with a data rate of 10 Hz. CPU-based methods have been

 173

adequate in the past for state estimator visualization because the data coming out of

the state estimator changes around once per minute, or 0.02 Hz. On the other hand,

CPU-based contouring of SCADA data, which is sampled every 2 to 3 s, can require a

significant reduction in both influence radius and resolution to keep up with the faster

data rate. Moving forward, the real-time visualization of PMU data, which arrives at

rates as high as 30 Hz, is impractical for CPU-based contouring and is a clear case

where GPU-based contouring should be used instead.

By upgrading the video card, improvements on the 0.102-s rendering time can be

attained. For instance, using a GeForce 8800 GT card, the average rendering time

drops to 0.033 s, which corresponds to a refresh rate of 30 Hz. Therefore, if this

video card is used, contours can be updated in real time based on PMU data coming in

at 30 samples/s. One of the other advanced metering devices deployed on the grid,

the FNET sensor, returns data to the central server at 10 samples/s. In addition,

contouring has been used by the research team developing FNET in order to interpret

the raw frequency data [91]. Although the videos hosted at [91] were created using

offline processing tools in MATLAB, real-time contouring of the frequency data

could easily be handled by either the 7600 or 8800 GT hardware.

One final application investigated is the visualization of angle difference

information at the PMU-monitored buses. The data visualized are the candidateθΔ

signals defined in (3.1), determined for each bus using an transN value corresponding

to 60 s. This is a much bigger value of transN than is used for event detection, and the

reason a longer transN is used is that it keeps any changes in the angles visible to the

 174

operator for an extended period of time as illustrated by the ()3
transN case in Figure 3.3.

Showing these angle contours to an operator would be a useful complement to the

event detection work, in that an operator, upon noticing a substantial shift in phasor

angles, could then query the event detection algorithms to help determine what causes

these angle changes. Figure 6.9 shows how this visualization would look during the

TVA line outage analyzed in Section 4.1.2. The color mapping used is shown in

Figure 6.10. The change in the contour before and after the event highlights the

change in angles on the system and would draw the attention of system operators for

further investigation. Also, the use of an transN value of 60 s lets the change stay

visible for 60 s after the event occurs; this is why the same contour is shown at 49 s

and 103 s. The deadband between -0.75 and 0.75 degrees in the colormap

corresponds to having an angle threshold of 0.75 degrees in event detection, since the

angle change must exceed 0.75 degrees before being highlighted.

Alternative methods of processing the incoming data could be used, or alternative

data such as voltage or frequency could be visualized without the extensive

processing used to obtain useful angle signals. Regardless, using GPUs provides a

great deal more flexibility in terms of PMU data visualization, and this technique

should significantly improve the potential of having real-time data visualization

within control centers.

 175

Figure 6.9: Contour of angle changes on the TVA system before and after the line
outage.

Figure 6.10: Colormap used for angle contours in Figure 6.9.

 176

7 CONCLUSIONS AND FUTURE WORK

Chapter 2 of the dissertation deals with the processing of phasor measurement

data in order to detect system events. The results presented for FIR and median

filtering highlight the key differences in these two filtering methods—FIR filtering

provides more consistent attenuation of noise and unwanted frequency components,

whereas median filtering preserves step changes in the system angles. When FIR

filtering is used in event detection, the main downside is the increased delay due to

the corruption of the step change and the need to capture a longer transition region.

Also, as seen with the filtering of the generator outage data, the choice of the cutoff

frequency can have a significant impact on the performance of FIR filtering. On the

other hand, with median filtering, performance is difficult to predict due to the widely

varying response depending on filter length. Also, the median filtering results based

on the real data obtained from TVA show that median filtering is less effective at

removing noise from the angle measurement signals. Ultimately, the choice of using

FIR or median filtering boils down to a tradeoff between minimizing delay in the

detection of the event (for which median filtering is superior) and minimizing errors

in the determination of observedθΔ (for which FIR filtering is superior). There are

several useful avenues of research for future work in the area of PMU data filtering.

One area of research, mentioned briefly in the main text, is to determine whether or

not hybrid FIR-median filters, which have been shown to work in image processing

applications, have similar benefits when applied to PMU measurements. In addition,

 177

there are entire classes of filtering methods which have not been considered, including

infinite impulse response (IIR) filtering and other types of nonlinear filters.

Chapter 3 discusses three algorithms which can be used to detect three different

types of events—single-line outages, double-line outages, and generator outages. The

way single- and double-line outages are modeled is typical when using the dc power

flow approximations, and it is unlikely that any improvements can be made to the line

outage modeling without adding additional state information. The usage of

geographically based filtering of the double-outage set is shown to significantly

reduce the search space for double-line outage detection. Future work examining

whether or not the filtered event set captures real power system events would be

useful. The generator outage modeling makes some significant assumptions in order

to predict the postevent angles on the system, including frequency uniformity across

the grid. This assumption, which results in accurate droop-based participation factors,

leads to a significant delay between event occurrence and detection. One possible

area of future research would be to look at different ways to model the changes in the

system due to generator outages in order to detect and classify these outages more

rapidly.

The third chapter examines the performance of the three algorithms from Chapter

3 in classifying events. All of the results show that in the majority of the events the

algorithms can properly classify events based on the observed angle changes due to

the events. Reducing the number of PMUs on the system is shown with both single-

and double-line outages to result in a significant increase in the number of events that

 178

cannot be differentiated. This is one justification for increasing the PMU deployment

on the power system, which currently has a very sparse deployment of these advanced

sensors. In addition, the failure of the dc power flow assumptions for several of the

single- and double-line outages due to high R/X ratios is clearly seen, showing that

the algorithms are ultimately dependent on how well the real system meets the dc

power flow assumptions. For the generator outage studies, the algorithm performs

well in ranking each generator outage, although lag between event occurrence and

classification should be reduced in order to improve situational awareness. One way

to extend this research is to obtain and test the algorithms with more real-world data

and larger test systems.

The PMU placement problem is discussed in Chapter 5, beginning with definition

of several possible objective functions and moving on to description of two means of

optimizing based on these objectives—exhaustive search and simulated annealing.

The overwhelming computational burden of exhaustive search and the shortcomings

of using an approximate optimizer like simulated annealing are both discussed.

Results from the simulated annealing and exhaustive search optimizations for the

placement of three and six PMUs show that simulated annealing does provide useful

results, although it is suboptimal. Testing other methods of large-scale combinatorial

optimization such as genetic algorithms would be useful, particularly if the results are

compared to simulated annealing and exhaustive search. The results obtained by

using simulated annealing for the placement of 9, 18, and 27 PMUs show that

deploying more PMUs will definitely increase the performance of the event detection

 179

algorithms and also that simulated annealing scales much better than exhaustive

search.

Finally, Chapter 6 presents a new method of contouring power system data which

leverages the abundant computational power of modern graphics cards. The results

indicate that moving contouring from the CPU to the GPU can result in significant

improvements to usability and provide opportunities for development of applications

that render newer measurement data in real time. In continuing this work, GPU-based

visualization techniques from other domains such as medical imagery and scientific

visualization can also be evaluated to see whether or not they provide a better

understanding of the system conditions to operators. Formal evaluations of how

GPU-based techniques impact user performance and satisfaction would also be useful

to obtain.

As new measurement devices are developed and deployed on the grid,

applications to improve situational awareness should be one of the top priorities due

to its importance in power system operations. This dissertation, which focuses on

both the processing and presentation of the new data available from PMUs, should

help in improving the awareness of grid conditions and, by doing so, improve the

reliability of the power grid.

 180

APPENDIX A 37-BUS SYSTEM DESCRIPTION

The basis for this system is the 37-bus system from Example 13.9 in [92]. The

machine and exciter models were changed to the GENROU [93] and IEEET1 [94]

models to provide a more detailed model than the original case, and the parameters

for these models were taken from similarly sized units in the Eastern Interconnect. In

addition, an IEEEG1 governor [69] was added to each machine using parameters from

similarly sized units in the Eastern Interconnect. A full description of the system is

provided in Tables A.1-A.10. Figures A.1 and A.2 show the full system one-line

diagram and the 18 PMUs monitored for outage testing, respectively.

Table A.1: Bus information

Table A.2: Generator information

 181

Table A.3: Line information

Table A.4: Load information

Table A.5: Switched shunt information

 182

Table A.6: Transformer control information

Table A.7: Line shunt information

Table A.8: Machine model information (all nonspecified parameters are zero)

Table A.9: Exciter model information

 183

Table A.10: Governor model information (all nonspecified parameters are zero)

Figure A.1: One-line diagram of the 37-bus system.

 184

Figure A.2: One-line diagram with 18 PMU buses as defined in Section 4.1.1.2
highlighted.

 185

REFERENCES
[1] US-Canada Power System Outage Task Force, "Final report on the August 14,

2003 blackout in the United States and Canada," April 2004.

[2] U.S. Department of Energy and Federal Energy Regulatory Commission,
"Steps to establish a real-time transmission monitoring system for
transmission owners and operators within the Eastern and Western
Interconnections," February 2006.

[3] A. G. Phadke, "Synchronized phasor measurements in power systems," IEEE
Computer Applications in Power, vol. 6, no. 2, pp. 10-15, 1993.

[4] M. Donnelly, M. Ingram, and J. R. Carroll, "Eastern interconnection phasor
project," in Proceedings of the 39th Annual Hawaii International Conference
on System Sciences, 2006, p. 245a.

[5] J. Weiqing, V. Vittal, and G. T. Heydt, "A distributed state estimator utilizing
synchronized phasor measurements," IEEE Transactions on Power Systems,
vol. 22, no. 2, pp. 563-571, 2007.

[6] M. Zhou, V. A. Centeno, J. S. Thorp, and A. G. Phadke, "An alternative for
including phasor measurements in state estimators," IEEE Transactions on
Power Systems, vol. 21, no. 4, pp. 1930-1937, 2006.

[7] J. S. Thorp, A. G. Phadke, and K. J. Karimi, "Real time voltage-phasor
measurement for static state estimation," IEEE Transactions on Power
Apparatus and Systems, vol. PAS-104, no. 11, pp. 3098-3106, 1985.

[8] A. P. S. Meliopoulos et al., "PMU data characterization and application to
stability monitoring," in IEEE Power Engineering Society General Meeting,
2006, pp. 1-8.

[9] K. Sun, S. Likhate, V. Vittal, V. S. Kolluri, and S. Mandal, "An online
dynamic security assessment scheme using phasor measurements and decision
trees," IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1935-1943,
2007.

[10] A. R. Khatib, R. F. Nuqui, M. R. Ingram, and A. G. Phadke, "Real-time
estimation of security from voltage collapse using synchronized phasor
measurements," in IEEE Power Engineering Society General Meeting, 2004,
vol. 1, pp. 582-588.

[11] G. Zhang, P. Hirsch, and S. Lee, "Wide area frequency visualization using
smart client technology," in IEEE Power Engineering Society General
Meeting, 2007, pp. 1-8.

 186

[12] R. Klump, R. E. Wilson, and K. E. Martin, "Visualizing real-time security
threats using hybrid SCADA / PMU measurement displays," in Proceedings of
the 38th Annual Hawaii International Conference on System Sciences, 2005,
p. 55c.

[13] S. Chun-Lien and J. Bo-Yuan, "Visualization of large-scale power system
operations using phasor measurements," in International Conference on
Power System Technology, 2006, pp. 1-6.

[14] A. Monticelli, "Modeling circuit breakers in weighted least squares state
estimation," IEEE Transactions on Power Systems, vol. 8, no. 3, pp. 1143-
1149, 1993.

[15] US-Canada Power System Outage Task Force, "Final report on the
implementation of the task force recommendations," September 2006.

[16] A. G. Phadke, J. S. Thorp, and M. G. Adamiak, "A new measurement
technique for tracking voltage phasors, local system frequency, and rate of
change of frequency," IEEE Transactions on Power Apparatus and Systems,
vol. PAS-102, no. 5, pp. 1025-1038, 1983.

[17] A. G. Phadke, "Synchronized phasor measurements-a historical overview," in
IEEE/PES Asia Pacific Transmission and Distribution Conference and
Exhibition, 2002, vol. 1, pp. 476-479.

[18] T. L. Baldwin, L. Mili, M. B. Boisen, Jr., and R. Adapa, "Power system
observability with minimal phasor measurement placement," IEEE
Transactions on Power Systems, vol. 8, no. 2, pp. 707-715, 1993.

[19] S. E. Widergren, Z. Huang, and J. E. Dagle, "Electric system-wide
measurements: North American directions," in Proceedings of the 40th Annual
Hawaii International Conference on System Sciences, 2007, p. 120.

[20] R. F. Nuqui and A. G. Phadke, "Phasor measurement unit placement
techniques for complete and incomplete observability," IEEE Transactions on
Power Delivery, vol. 20, no. 4, pp. 2381-2388, 2005.

[21] B. Fardanesh, S. Zelingher, A. P. Sakis Meliopoulos, G. Cokkinides, and J.
Ingleson, "Multifunctional synchronized measurement network," IEEE
Computer Applications in Power, vol. 11, no. 1, pp. 26-30, 1998.

[22] A. R. Messina, V. Vittal, D. Ruiz-Vega, and G. Enriquez-Harper,
"Interpretation and visualization of wide-area PMU measurements using
Hilbert analysis," IEEE Transactions on Power Systems, vol. 21, no. 4, pp.
1763-1771, 2006.

 187

[23] S. M. Brahma and A. A. Girgis, "Fault location on a transmission line using
synchronized voltage measurements," IEEE Transactions on Power Delivery,
vol. 19, no. 4, pp. 1619-1622, 2004.

[24] R. O. Burnett, Jr. et al., "Synchronized phasor measurements of a power
system event," IEEE Transactions on Power Systems, vol. 9, no. 3, pp. 1643-
1650, 1994.

[25] J. F. Hauer, "Validation of phasor calculations in the Macrodyne PMU for
California-Oregon transmission project tests of March 1993," IEEE
Transactions on Power Delivery, vol. 11, no. 3, pp. 1224-1231, 1996.

[26] J. F. Hauer, N. B. Bhatt, K. Shah, and S. Kolluri, "Performance of WAMS
East in providing dynamic information for the northeast blackout of August
14, 2003," in IEEE Power Engineering Society General Meeting, 2004, vol. 2,
pp. 1685-1690.

[27] IEEE Power Engineering Society, "IEEE standard for synchrophasors for
power systems," IEEE Std C37.118-2005, 2006.

[28] North American Electric Reliability Corporation, "Reliability coordinator
reference document," 2004.

[29] L. S. Davis, "A survey of edge detection techniques," Computer Graphics and
Image Processing, vol. 4, no. 3, pp. 248-270, 1975.

[30] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Upper
Saddle River, NJ: Prentice Hall, 2003.

[31] A. C. Bovik and J. D. C. Munson, "Edge detection using median
comparisons," Computer Vision, Graphics, and Image Processing, vol. 33, no.
3, pp. 377-389, 1986.

[32] W. C. Karl, S. B. Leeb, L. A. Jones, J. L. Kirtley, and G. C. Verghese,
"Applications of rank-based median filters in power electronics," IEEE
Transactions on Power Electronics, vol. 7, no. 3, pp. 437-443, 1992.

[33] M. Kezunovic, I. Rikalo, and D. J. Sobajic, "Real-time and off-line
transmission line fault classification using neural networks," International
Journal of Engineering Intelligent Systems, vol. 4, no. 1, pp. 57-63, March
1996.

[34] C. J. Kim and B. D. Russell, "Classification of faults and switching events by
inductive reasoning and expert system methodology," IEEE Transactions on
Power Delivery, vol. 4, no. 3, pp. 1631-1637, 1989.

 188

[35] W. R. Anis Ibrahim and M. M. Morcos, "Artificial intelligence and advanced
mathematical tools for power quality applications: A survey," IEEE
Transactions on Power Delivery, vol. 17, no. 2, pp. 668-673, 2002.

[36] H. Singh and F. L. Alvarado, "Network topology determination using least
absolute value state estimation," IEEE Transactions on Power Systems, vol.
10, no. 3, pp. 1159-1165, 1995.

[37] F. L. Alvarado, "Determination of external system topology errors," IEEE
Transactions on Power Apparatus and Systems, vol. PAS-100, no. 11, pp.
4553-4561, 1981.

[38] F. Schlaepfer, T. C. Kelly, and A. G. Dewey, "An interactive load flow
program," IEEE Transactions on Power Apparatus and Systems, vol. PAS-91,
no. 1, pp. 78-84, 1972.

[39] G. Pires de Azevedo, C. Sieckenius de Souza, and B. Feijo, "Enhancing the
human-computer interface of power system applications," IEEE Transactions
on Power Systems, vol. 11, no. 2, pp. 646-653, 1996.

[40] J. D. Weber and T. J. Overbye, "Voltage contours for power system
visualization," IEEE Transactions on Power Systems, vol. 15, no. 1, pp. 404-
409, 2000.

[41] Y. Sun and T. J. Overbye, "Visualizations for power system contingency
analysis data," IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 1859-
1866, 2004.

[42] T. J. Overbye, D. A. Wiegmann, A. M. Rich, and Y. Sun, "Human factors
aspects of power system voltage contour visualizations," IEEE Transactions
on Power Systems, vol. 18, no. 1, pp. 76-82, 2003.

[43] D. A. Wiegmann, G. R. Essenberg, T. J. Overbye, and Y. Sun, "Human factor
aspects of power system flow animation," IEEE Transactions on Power
Systems, vol. 20, no. 3, pp. 1233-1240, 2005.

[44] D. Savageau and T. J. Overbye, "Adaptive influence distance algorithm for
contouring bus-based power system data," in Proceedings of the 40th Annual
Hawaii International Conference on System Sciences, 2007, p. 117.

[45] D. Geer, "Taking the graphics processor beyond graphics," Computer, vol. 38,
no. 9, pp. 14-16, 2005.

[46] M. Pharr, Ed., GPU Gems 2. Reading, MA: Addison-Wesley, 2005.

[47] H. Nguyen, Ed., GPU Gems 3. Reading, MA: Addison-Wesley, 2007.

 189

[48] S. W. Park, L. Linsen, O. Kreylos, J. D. Owens, and B. Hamann, "A
framework for real-time volume visualization of streaming scattered data," in
10th International Fall Workshop on Vision, Modeling, and Visualization,
2005, pp. 225-232.

[49] J. Y. C. Chen and J. E. Thropp, "Review of low frame rate effects on human
performance," IEEE Transactions on Systems, Man and Cybernetics, Part A,
vol. 37, no. 6, pp. 1063-1076, 2007.

[50] B. Stott, "Review of load-flow calculation methods," Proceedings of the IEEE,
vol. 62, no. 7, pp. 916-929, 1974.

[51] Y. Ota, T. Hashiguchi, H. Ukai, M. Sonoda, Y. Miwa, and A. Takeuchi,
"Monitoring of interconnected power system parameters using PMU based
WAMS," in Power Tech 2007 Conference, Lausanne, Switzerland, 2007, p. 5.

[52] Y. Jun-Zhe, L. Chih-Wen, and W. Wen-Giang, "A hybrid method for the
estimation of power system low-frequency oscillation parameters," IEEE
Transactions on Power Systems, vol. 22, no. 4, pp. 2115-2123, 2007.

[53] K. Mei, S. M. Rovnyak, and O. Chee-Mun, "Dynamic event detection using
wavelet analysis," in IEEE Power Engineering Society General Meeting,
2006, p. 7.

[54] I. Kamwa, J. Beland, and D. McNabb, "PMU-based vulnerability assessment
using wide-area severity indices and tracking modal analysis," in IEEE Power
Systems Conference and Exposition, 2006, pp. 139-149.

[55] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[56] M. Klein, G. J. Rogers, and P. Kundur, "A fundamental study of inter-area
oscillations in power systems," IEEE Transactions on Power Systems, vol. 6,
no. 3, pp. 914-921, 1991.

[57] P. Kundur and W. Lei, "Small signal stability analysis: Experiences,
achievements, and challenges," in International Conference on Power System
Technology, 2002, vol. 1, pp. 6-12.

[58] R. L. Cresap and J. F. Hauer, "Emergence of a new swing mode in the western
power system," IEEE Transactions on Power Apparatus and Systems, vol.
PAS-100, no. 4, pp. 2037-2045, 1981.

[59] N. Sankarayya, K. Roy, and D. Bhattacharya, "Optimizing computations in a
transposed direct form realization of floating-point LTI-FIR systems," in
IEEE/ACM International Conference on Computer-Aided Design, 1997, pp.
120-125.

 190

[60] J. K. Wang, R. M. Gardner, and L. Yilu, "Analysis of system oscillations
using wide-area measurements," in IEEE Power Engineering Society General
Meeting, 2006, pp. 1-6.

[61] E. Chen, H. S. Timorabadi, and F. P. Dawson, "Real-time phasor measurement
method including a GPS common time-stamp for distributed power system
monitoring and control," in Canadian Conference on Electrical and Computer
Engineering, 2005, pp. 441-444.

[62] M. Juhola, J. Katajainen, and T. Raita, "Comparison of algorithms for standard
median filtering," IEEE Transactions on Signal Processing, vol. 39, no. 1, pp.
204-208, 1991.

[63] Z. Huang, T. Faris, K. Martin, J. Hauer, C. Bonebrake, and J. Shaw,
"Laboratory performance evaluation report of SEL 421 phasor measurement
unit," Pacific Northwest National Laboratory, November 2007.

[64] J. Astola and P. Kuosmann, Fundamentals of Nonlinear Digital Filtering.
Boca Raton, FL: CRC Press, 1997.

[65] A. Wood and B. Wollenberg, Power Generation, Operation, and Control.
New York, NY: Wiley, 1984.

[66] H. Anton, Elementary Linear Algebra, 8th ed. New York, NY: Wiley, 2000.

[67] M. Crow, Computational Methods for Electric Power Systems. Boca Raton,
FL: CRC Press, 2003.

[68] P. Kundur, Power System Stability and Control. New York, NY: McGraw-
Hill, 1994.

[69] IEEE Task Force on Overall Plant Response, "Dynamic models for steam and
hydro turbines in power system studies," IEEE Transactions on Power
Apparatus and Systems, vol. PAS-92, no. 6, pp. 1904-1915, 1973.

[70] T. Guler and G. Gross, "Detection of island formation and identification of
causal factors under multiple line outages," IEEE Transactions on Power
Systems, vol. 22, no. 2, pp. 505-513, 2007.

[71] B. L. Silverstein and D. M. Porter, "Contingency ranking for bulk system
reliability criteria," IEEE Transactions on Power Systems, vol. 7, no. 3, pp.
956-964, 1992.

[72] N. Megiddo, "Linear-time algorithms for linear programming in R3 and related
problems," SIAM Journal on Computing, vol. 12, no. 4, pp. 759-776, 1983.

 191

[73] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated
annealing," Science, vol. 220, no. 4598, pp. 671-680, May 1983.

[74] K. A. De Jong, "Analysis of the behavior of a class of genetic adaptive
systems," August 1975. [Online]. Available: http://hdl.handle.net/
2027.42/4507.

[75] J. Kennedy and R. Eberhart, "Particle swarm optimization," in IEEE
International Conference on Neural Networks, 1995, vol. 4, pp. 1942-1948.

[76] K. P. Wong and Y. W. Wong, "Combined genetic algorithm/simulated
annealing/fuzzy set approach to short-term generation scheduling with take-or-
pay fuel contract," IEEE Transactions on Power Systems, vol. 11, no. 1, pp.
128-136, 1996.

[77] I. Amidror, "Scattered data interpolation methods for electronic imaging
systems: A survey," Journal of Electronic Imaging, vol. 11, no. 2, pp. 157-
176, 2002.

[78] W. A. Nuss and D. W. Titley, "Use of multiquadric interpolation for
meteorological objective analysis," Monthly Weather Review, vol. 122, no. 7,
pp. 1611-1631, July 1994.

[79] T. M. Lehmann, C. Gonner, and K. Spitzer, "Survey: Interpolation methods in
medical image processing," IEEE Transactions on Medical Imaging, vol. 18,
no. 11, pp. 1049-1075, 1999.

[80] R. J. Renka, "Multivariate interpolation of large sets of scattered data," ACM
Transactions on Mathematical Software, vol. 14, no. 2, pp. 139-148, 1988.

[81] D. Shepard, "A two-dimensional interpolation function for irregularly-spaced
data," in Proceedings of the 23rd ACM National Conference, 1968, pp. 517-
524.

[82] R. E. Barnhill, "Representation and approximation of surfaces," in
Mathematical Software III, J. R. Rice, Ed. New York, NY: Academic Press,
1977, pp. 517-523.

[83] E. Kilgariff and R. Fernando, "The GeForce 6 series GPU architecture," in
GPU Gems 2, M. Pharr, Ed. Reading, MA: Addison-Wesley, 2005, pp. 471-
491.

[84] S. Green, "The OpenGL framebuffer object extension," presented at Game
Developers Conference, San Francisco, CA, 2005.

 192

[85] M. Kilgard, “The OpenGL Utility Toolkit (GLUT) programming interface
API version 3,” 2008. [Online]. Available: http://www.opengl.org/
documentation/specs/glut/spec3/spec3.html.

[86] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, "Cg: A system for
programming graphics hardware in a C-like language," in ACM SIGGRAPH
International Conference on Computer Graphics and Interactive Techniques,
2003, pp. 896-907.

[87] J. D. Meier, S. Vasireddy, A. Babbar, and A. Mackman, "How to: time
managed code using QueryPerformanceCounter and
QueryPerformanceFrequency," Microsoft Developer Network, May 2004.
[Online]. Available: http://msdn2.microsoft.com/en-us/library/ms979201.aspx.

[88] A. Dix, J. Finlay, G. D. Abowd, and R. Beale, Human-Computer Interaction,
3rd ed. New York, NY: Pearson, 2004.

[89] J. D. McCarthy, M. A. Sasse, and D. Miras, "Sharp or smooth: Comparing the
effects of quantization vs. frame rate for streamed video," in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, Vienna,
Austria, 2004.

[90] G. M. Wilson, "Psychophysiological indicators of the impact of media quality
on users," in CHI Extended Abstracts on Human Factors in Computing
Systems, 2001, pp. 95-96.

[91] Virginia Tech Power IT Lab, "Frequency wave propagation," 2008. [Online].
Available: http://www.powerit.vt.edu/FNET/05-2-Application-frequency
_wave_propagation.htm.

[92] J. D. Glover, M. S. Sarma, and T. Overbye, Power System Analysis and
Design, 4th ed. Boston, MA: Thomson Engineering, 2008.

[93] F. P. de Mello and L. H. Hannett, "Validation of synchronous machine models
and derivation of model parameters from tests," IEEE Transactions on Power
Apparatus and Systems, vol. PAS-100, no. 2, pp. 662-672, 1981.

[94] "Computer representation of excitation systems," IEEE Transactions on
Power Apparatus and Systems, vol. PAS-87, no. 6, pp. 1460-1464, 1968.

 193

AUTHOR’S BIOGRAPHY

Joseph Euzebe Tate was born in Opelousas, Louisiana, on December 16, 1980.

He graduated from Louisiana Tech University in May 2003 with a Bachelor of

Science in Electrical Engineering with a minor in Mathematics. He completed a

Master of Science in Electrical and Computer Engineering at the University of Illinois

at Urbana-Champaign (UIUC) in May 2005. Following the completion of his Ph.D.,

also at UIUC, Tate will begin work as an assistant professor at the University of

Toronto in the Department of Electrical and Computer Engineering.

