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ABSTRACT 

Studies of the optimal multiplier (or optimal step size) modification to the 

standard Newton-Raphson load flow have mainly focused on highly stressed and 

unsolvable systems.  This paper extends these previous studies by comparing 

performance of the Newton-Raphson load flow with and without optimal multipliers for a 

variety of unstressed, stressed, and unsolvable systems.  Also, the impact of coordinate 

system choice in representing the voltage phasor at each bus is considered.  In total, four 

solution methods are compared: the Newton-Raphson algorithm with and without optimal 

multipliers using polar and rectangular coordinates.  This comparison is carried out by 

combining analysis of the optimal multiplier technique with empirical results for 2-bus, 

118-bus, and 10 274-bus test cases.  These results indicate that the polar Newton-

Raphson load flow with optimal multipliers is the best method of solution for both 

solvable and unsolvable cases. 
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1. INTRODUCTION 

1.1 Motivation 

While the Newton-Raphson (NR) load flow [1] has served the power industry 

well, one of the fundamental problems with the NR load flow has always been the 

possibility of divergence during solution.  Divergence can occur when solving the load 

flow equations for a variety of reasons: 

• Infeasibility, i.e., no solution to the load flow equations exists 

• The system solution is too close to the boundary of unsolvability 

• The initial guess of the solution is too far from the actual solution 

Infeasibility has become more of a problem in the electricity grid since 

restructuring occurred.  This is due to the increased utilization of existing transmission 

resources without any significant increase in transmission investment [2].  These 

activities have led to a system that is operated very close to the region of unsolvability, 

defined as the set of system parameters such that the power flow does not have a solution 

[3, 4].  The space of system parameters, divided into solvable and unsolvable regions, is 

illustrated in Figure 1.1.  When contingency analysis is performed on systems that are 

already very close to the unsolvability boundary, it is not uncommon to find system 

configurations that are unsolvable. 

The problem of having a solution that is too close to the boundary of infeasibility 

is due to the near-singularity of the Jacobian used in the NR load flow.  This problem is 

particularly prevalent when performing maximum loadability studies.  Several techniques 

have been developed for the sole purpose of avoiding difficulties at the boundary of 

infeasibility with the standard NR load flow, most notably the continuation load flow 
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methods.  However, even the continuation methods can have difficulties when the initial 

guess at a solution is too far from the actual solution.  In particular, when the predicted 

point taken as a result of the predictor step is too far from the solution, the corrector step 

(load flow solution) may be too far from the solution point, leading to divergence [5]. 

 

Figure 1.1 - Power flow security regions [3]  

The problem of the initial guess has always plagued the NR method and is one of 

its primary disadvantages.  While the NR method of solving nonlinear equations is well-

established to exhibit quadratic convergence in a region that is sufficiently close to the 

final solution, the behavior of the NR load flow when the initial guess is far away from 

the solution is very unpredictable.  In fact, it has been shown that the load flow problem 

has fractal regions of convergence [6].   

1.2 Methods of Controlling Divergence 

Divergence of the NR load flow has several drawbacks.  First, if the solution 

process diverges, nothing has been gained.  Accordingly, the faster the solution can be 

stopped, the more time is saved.  Also, it is difficult to know whether the divergence of 
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the NR load flow is due to poor initial conditions or unsolvability of the power system.  

Accordingly, many load flow solution methods have been developed to contain or 

eliminate divergence of the standard NR load flow. 

Reference [7] provides an excellent summary of methods used to mitigate 

divergence in load flow solutions by step size optimization.  These methods and others 

have been shown to prevent divergence of the load flow solution in many cases. 

1.3 Desirable Characteristics of a Load Flow Solution Method 

While nondivergence is an excellent characteristic to have in a load flow solution 

algorithm, any method used for load flow solutions must be both fast and robust for any 

type of system, whether the system is unstressed, stressed, or unsolvable.  Unfortunately, 

little attention has been paid to the behavior of these nondivergent methods for normally 

convergent, unstressed systems in addition to stressed and unsolvable systems. 

One candidate load flow solution method which has been shown to possess both 

speed and robustness for stressed and unsolvable systems is the optimal multiplier (OM) 

modification to the standard NR load flow.  The OM load flow was first conceived in 

rectangular coordinates [8], but then extended using the same concepts to polar 

coordinates.  Reference [9] provides full details on how the method of [8] has been 

extended to polar coordinates with varying degrees of success.  Although the OM load 

flow has been extended to polar coordinates, comparison to the equivalent formulation in 

rectangular coordinates has not been performed. 

1.4 Overview 

The lack of comparison between the two coordinate systems is a crucial oversight, 

for the speed and robustness of a given load flow algorithm depend not only on the 
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choice of algorithm but also on the choice of coordinate system used to represent the 

voltage phasors at the system buses [10].  Without such a comparison, load flow software 

developers must simply choose one coordinate system and hope that it is the best.  While 

developers may end up getting lucky with their choice, it would be better to have 

evidence supporting the use of one system over the other.   

Accordingly, the remainder of this thesis presents a direct comparison of four 

methods—the OM load flow and NR load flow using polar and rectangular coordinates.  

Chapter 2 provides the notation and formulation used in the standard NR load flow and 

the OM load flow solution methods.  Chapter 3 discusses the relative advantage and 

disadvantages of using rectangular or polar coordinates to represent the voltage phasors at 

each bus.  Chapter 4 provides case studies demonstrating the performance of the different 

solution methods on 2-bus, 118-bus, and 10 274-bus cases.  Chapter 5 reviews the results 

from the case studies and provides analysis of the results.  Finally, Chapter 6 provides the 

main conclusion of this work, namely that the polar formulation of the OM load flow 

provides the best combination of speed and robustness for unstressed, stressed, and 

unsolvable systems. 
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2.  THE NR AND OM LOAD FLOW METHODS 

2.1 The Coordinate Systems and the Load Flow Equations 

In the polar NR load flow, the complex voltage phasor at each bus is represented 

using polar coordinates: 

 ˆ ˆ
i i iV V θ= ∠  (2.1) 

For the rectangular load flow formulation, the voltage phasor at each bus is represented 

using rectangular coordinates: 

 î i iV e j f= +  (2.2) 

Figure 2.1 shows the relationships between the quantities in Equations (2.1) and (2.2): 

 

Figure 2.1 - Polar and rectangular representations of the bus voltage phasor 

In the standard NR load flow, the set of load flow equations ( ) =f x 0  is solved.  

When polar coordinates are used for the voltage phasors, ( )f x contains real and reactive 

power balance equations of the following forms: 

 
( ) ( ) ( )( ){ }Polar

, ,

ˆ ˆ cos sin

0
i

i i k ik i k ik i k
k

load i gen i

P V V G B

P P

θ θ θ θ
∈

= − + −

+ − =

∑x
C  (2.3) 
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( ) ( ) ( )( ){ }Polar

, ,

ˆ ˆ sin cos

0
i

i i k ik i k ik i k
k

load i gen i

Q V V G B

Q Q

θ θ θ θ
∈

= − − −

+ − =

∑x
C  (2.4) 

where îj ij ijY G jB= + , the complex admittance between buses i and j, and iC denotes the 

set of all buses connected to bus i, including itself.  The most important aspect of these 

equations as they relate to the OM load flow is the presence of transcendental functions 

in (2.3) and (2.4).   

For the rectangular formulation, ( )f x  contains real power balance, reactive 

power balance, and voltage setpoint equations of the following forms: 

 
( ) ( ) ( ){ }Rect

, , 0
i

i i ik k ik k i ik k ik k
k

load i gen i

P e G e B f f G f B e

P P
∈

= − + +

+ − =

∑x
C  (2.5) 

 
( ) ( ) ( ){ }Rect

, , 0
i

i i ik k ik k i ik k ik k
k

load i gen i

Q f G e B f e G f B e

Q Q
∈

= − − +

+ − =

∑x
C  (2.6) 

 ( )
2Rect 2 2 ˆ 0i i i i specified

V e f V= + − =x  (2.7) 

It should be noted that the rectangular formulation uses an extra equation at each 

PV bus in the system (2.7) due to the need to maintain the specified voltage magnitude at 

these buses.  As a result, the rectangular formulation has a larger equation and variable 

count than the polar formulation, with the difference equal to the number of voltage-

controlled buses in the system.  The salient characteristic of these equations with regard 

to the OM load flow is that all the state variables in (2.5)-(2.7) appear in quadratic terms. 

This leads to significant simplification of the Taylor series expansion of ( )f x  in 

rectangular coordinates. 
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2.2 The NR Load Flow 

2.2.1 Formulation 

The Newton-Raphson load flow [1] applies the well-known NR algorithm to the 

power flow equations (2.3)-(2.7).  The NR method derivation begins with the first-order 

Taylor series expansion of ( )f x  at an iteration ν : 

 ( ) ( )( ) ( )( ) ( ) ( )ν ν ν ν ν+ Δ ≈ + Δf x x f x J x  (2.8) 

where ( )νJ  is the Jacobian matrix of first-order partial derivatives of ( )f x  with respect to 

x: 

 ( )

( )

1 1

1

1

n

n n

n

f f
x x

f f
x x ν

ν

=

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦ x x

J

…

# % #

"

 (2.9) 

By setting the left-hand side of (2.8) equal to zero, ( )νΔx  can be determined: 

 ( ) ( ) ( )( )1ν ν ν−
⎡ ⎤Δ = − ⎣ ⎦x J f x  (2.10) 

Once ( )νΔx  has been determined, the states are updated and the iteration count is 

incremented by 1: 

 
( ) ( ) ( )1

1

ν ν ν

ν ν

+ = + Δ
= +

x x x  (2.11) 

Given an initial condition ( )0x  and setting 0ν = , (2.10) and (2.11) are evaluated 

repeatedly until a convergence criterion, e.g., ( )( )ν ε
∞
<f x , is met. 
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2.2.2 Comments 

The NR algorithm, in general, is very well behaved in regions very close to the 

solution, where the first-order Taylor series expansion is quite accurate.  In regions close 

to the solution, the NR load flow exhibits quadratic convergence.   

On the other hand, the algorithm can perform very poorly when the initial values 

( )0x  are far from a solution [11].  With poor starting conditions, the algorithm can 

diverge, leading to no solution even if the set of equations does have a solution.  Such 

behavior can easily be observed by attempting to flat start an extremely large power 

system.   

Also, it is possible that the set of equations ( ) =f x 0 are unsolvable, which also 

leads to divergence in the NR load flow.  This undesirable behavior is particularly 

prevalent in contingency studies, where many changes to the system topology are carried 

out. 

Finally, it is possible for an iteration to wind up where the Jacobian (2.9) is either 

singular or very close to singular.  In these cases, inversion of the Jacobian (2.10) can 

lead to an inaccurate or incalculable ( )νΔx .  When this happens, the algorithm may 

diverge, giving meaningless results.   

To combat the problems inherent in divergence of the NR algorithm, various 

modifications to (2.11) have been used in the past to control this behavior ([7] provides 

an excellent summary of several methods).  One particularly promising method of 

controlling divergence is augmentation of the NR load flow with optimal multipliers. 
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2.3 The OM Load Flow 

The optimal multiplier modification to the Newton-Raphson algorithm was first 

introduced for the rectangular formulation of the power flow equations [8].  Later, the 

same techniques were applied to the polar formulation [9].  Presented here is a general 

formulation of the optimal multiplier for any set of nonlinear equations ( )f x , from which 

the rectangular and polar formulations detailed in [8] and [12] can easily be obtained by 

setting ( )f x  to be the set of power flow equations (2.3)-(2.7).  In the following chapter, 

specific comments on the rectangular and polar formulations as they relate to the OM 

load flow are presented. 

2.3.1 Formulation 

The basic idea behind the optimal multiplier technique is to choose the best 

scaling of the update vector ( )νΔx  such that the norm of the second-order Taylor 

expansion of the mismatch equations is minimized.  The technique is formulated by first 

modifying the standard NR update step (2.11): 

 ( ) ( ) ( )1ν ν νμ+ = + Δx x x  (2.12) 

where ( )νμ  is a scalar value used to scale the update to ( )νx  at an iteration ν  and ( )νΔx  is 

obtained using (2.10) as in the standard NR algorithm.  Rewriting the Taylor series 

expansion for a single function ( )if x  with the scalar multiplier ( )νμ  and the second-

order term of the Taylor expansion gives: 
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( ) ( ) ( )( ) ( )( ) ( ) ( )
( )

( )

( )( ) ( )
( )
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1

2
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1 12

n
i

i i k
k k
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ν ν ν ν ν ν

ν
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= = =

⎛ ⎞∂
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x x

x x

x
x x x

x
 (2.13) 

For convenience, several vectors are defined for the quantities on the right-hand side of 

(2.13): 

 ( )

( )( )
( )( )

( )( )
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f

f
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#
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 (2.16) 

Equation (2.13), the quadratic approximation to ( )f x , can now be rewritten as 

 ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )2ν ν ν ν ν ν νμ μ+ Δ ≈ + +f x x a b c  (2.17) 
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Note that in general (2.17) does not hold with strict equality due to the third and 

higher order terms of the Taylor series expansion of ( )f x .  However, in the rectangular 

formulation, because all terms in the Taylor series expansion of order three and above are 

zero, (2.17) holds with strict equality.   

The optimal multiplier ( )νμ  of the update vector ( )νΔx  is determined by solving 

the following minimization problem: 

 
( ) ( ) ( ) ( ) ( )( ) ( )

( )

[ ]
( ) ( )

[ ]
( )( )

2

2

20, 0,

1 1arg min arg min
2 2

T

ν ν ν ν ν

ν

μ μ

μ μ μ

μ μ μ μ
∈ ∞ ∈ ∞

= + +

= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

F a b c

F F F
 (2.18) 

To determine the value of ( )νμ  that solves the minimization problem in (2.18), the first 

order necessary condition of optimality is used: 

 ( )( )
( )

2

2

1 0
2 νμ

μ
μ

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

F  (2.19) 

Equation (2.19) is a cubic equation in ( )νμ : 

 ( ) ( )( ) ( )( )2 3

0 1 2 3 0g g g gν ν νμ μ μ+ + + =  (2.20) 

where 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0

1

2

3

2

3

2

T

T T

T

T

g

g

g

g

ν ν

ν ν ν ν

ν ν

ν ν

⎡ ⎤= ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

a b

b b a c

b c

c c

 (2.21) 
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A closed form solution for (2.20) exists and is available in many mathematical 

handbooks, e.g. [13].  In the case of multiple roots, the smallest real root is chosen as the 

optimal multiplier [8]. 

2.3.2 Comments 

As should be obvious from (2.12), the optimal multiplier is only able to scale 

( )νΔx ; the direction of the update vector ( )νΔx  is still based entirely on the first-order 

Taylor series expansion as in the standard NR algorithm.  Accordingly, if the 

linearization of ( )f x  is poor, ( )νΔx  may not indicate a very good direction.  When the 

direction is not very good, the optimal multiplier provides little help in solving the system 

and can even slow down the solution. 

For example, consider the single-variable equation 

 ( )34( ) 1 1f x x x= + − −  (2.22) 

This equation has only one real-valued solution: x = 1.  To examine the behavior 

of the Newton-Raphson algorithm for this system, with and without the usage of optimal 

multipliers, a starting value of ( )0 20x =  is used.  The function evaluation (2.22) at each 

iteration ν  for both the standard NR and the NR with optimal multipliers is shown in 

Figure 2.2, plotted on a log scale.  Note that the NR algorithm takes longer to converge to 

the solution when optimal multipliers are used.  Also, the NR algorithm without optimal 

multipliers exhibits quadratic convergence starting with iteration 12, whereas the OM 

solution exhibits quadratic convergence starting with iteration 17—this is a sizable 

difference in convergence rate, as one of the main reasons to use the NR algorithm is the 

property of quadratic convergence. 
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Figure 2.2 - Convergence of NR algorithm with and without optimal multipliers for solution of (2.22) 

Figure 2.3 demonstrates why the optimal multiplier solution is slower—the values 

of ( )νμ  < 1 indicate that smaller steps are taken at each iteration in comparison to the 

standard NR algorithm.  In fact, ( )νμ  does not reach a steady value of 1 (thereby 

becoming equivalent to the standard NR algorithm) until iteration 17. 

This behavior can be seen mathematically by examining the effect of large and 

small second-order terms on the optimal multiplier.  The only information used when 

computing the optimal multiplier ( )νμ  that is not used in computing the update vector 

( )νΔx  is the second-order term ( )νc  (2.16).  Because ( )νc  is the second-order term of the 

Taylor expansion, ( )νc  is zero if the load flow equations are exactly equal to their first-

order Taylor series expansion, i.e., (2.8) holds with strict equality.  When (2.8) is instead 

an approximation, ( )νc  can take on a wide range of values. 
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Figure 2.3 - Behavior of ( )νμ  during solution of (2.22) 

If ( )νc  is zero, the optimal multiplier will be 1, just as if the NR algorithm were 

used.  This can be seen by examining the minimization problem in (2.18) with ( )νc  set 

equal to zero: 

 

( )

[ ]

( ) ( ) ( ) ( ) ( ) ( )

[ ]

( ) ( )( )( ) ( ) ( )

[ ]

( )( )

0,

2

0,

2

0,

1arg min
2
1arg min 1 2
2
1arg min 1
2

T

Tν ν ν ν ν ν ν

μ

ν ν ν ν

μ

ν

μ

μ μ μ

μ μ

μ

∈ ∞

∈ ∞

∈ ∞

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

⎡ ⎤= + +⎢ ⎥⎣ ⎦

= +

a b a b

a a  (2.23) 

This minimization problem has the trivial solution of ( ) 0νμ = .  On the other hand, if ( )νc  

is much larger in magnitude than ( )νa  and ( )νb , (2.18) can be reduced to 

 ( )

[ ]

( ) ( )2

0,

1arg min
2

Tν ν ν

μ
μ μ

∈ ∞

⎡ ⎤≈ ⎢ ⎥⎣ ⎦
c c  (2.24) 



15 

The solution of (2.24) is ( ) 0νμ ≈ , indicating that a large second-order term in the Taylor 

expansion leads to a very small optimal multiplier value.  

A small optimal multiplier is desirable when attempting to solve unsolvable 

systems; it is precisely because ( )νμ  takes on small values in such cases that divergence 

of the OM load flow is prevented.  On the other hand, if small optimal multipliers occur 

when solving solvable systems, then the algorithm can take more iterations than the 

standard NR algorithm (which can be thought of as using a constant multiplier of 1).  

This behavior will be demonstrated in several case studies where the rectangular form of 

the OM load flow is used. 
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3. ADVANTAGES AND DISADVANTAGES OF EACH COORDINATE 
SYSTEM FOR THE OM LOAD FLOW 

3.1 Advantages and Disadvantages of Polar Coordinates 

The polar formulation has several advantages over the rectangular formulation 

when solving the load flow using the OM solution method.  The polar form of the load 

flow equations exhibits excellent linearization characteristics, as demonstrated by both 

the Fast Decoupled Load Flow (FDLF) [14] and the usefulness of linear sensitivities in 

power system analysis such as power transfer distribution factors (PTDFs) [15].  Also, 

the polar formulation of the load flow equations has fewer equations to solve than the 

rectangular formulation.  This can be significant for systems with relatively high 

percentages of voltage-controlled buses as in the IEEE 118-bus system. 

However, there are also disadvantages to using the polar formulation instead of 

the rectangular formulation.  The most significant drawback to the polar formulation is 

the presence of transcendental functions in the load flow equations.  These functions lead 

to infinite order terms in the Taylor expansion, which makes (2.17) an approximation 

rather than a strict equality as in the rectangular formulation.  As a result, the calculation 

of ( )νμ  can be less accurate with the polar formulation than with the rectangular 

formulation.  Also, the presence of sine and cosine functions in the polar load flow 

equations (2.3) and (2.4) leads to a more complex calculation of the second-order term 

( )νc  when compared to the calculation of ( )νc  using rectangular coordinates.  Fortunately, 

the calculation of ( )νc  is still on the order of a mismatch calculation [9, 12].   
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Although there are some disadvantages to using the polar formulation, the case 

studies demonstrate that these disadvantages are outweighed by the advantages of using 

the polar formulation of the load flow equations and variables.  

3.2 Advantages and Disadvantages of Rectangular Coordinates 

In the original derivation of the OM solution method [8], several key advantages 

of the rectangular formulation are given.  The greatest benefit of using the rectangular 

formulation results from the quadratic nature of the load flow equations when rectangular 

coordinates are used.  Because all the state variables appear in quadratic terms in the 

equations, the third and higher order terms of the Taylor expansion are zero; this makes 

the Taylor series approximation used for optimal multiplier calculation (2.17) hold with 

strict equality.  This can lead to greater accuracy in the calculation of ( )νμ  relative to the 

polar formulation.  Further, ( )νc  is much easier to calculate than with the polar 

formulation, because in the rectangular formulation [8] 

 ( ) ( )( )ν ν= Δc f x  (3.1) 

As a result, calculating the second-order term is just a matter of plugging ( )νΔx  into the 

mismatch calculation routines instead of ( )νx .  Unfortunately, there are also several 

disadvantages to using the rectangular formulation.  One problem with the rectangular 

formulation is the lack of widespread implementation of the NR load flow in rectangular 

coordinates [10], though at least one commercial load flow package does use the 

rectangular formulation by default [16].  The poor performance of the decoupled load 

flow in rectangular coordinates [17, 18] relative to the FDLF also indicates that the 

rectangular formulation may not have as good of a linearization as the polar formulation.  
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The extra voltage mismatch equation that must be satisfied at PV buses (2.7) can also 

lead to difficulties with the OM algorithm in rectangular coordinates [19].  The two-bus 

PV system examined in Chapter 4 clearly demonstrates how the extra equation can cause 

trouble with the OM algorithm. 
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4. CASE STUDIES 

Because the convergence behavior of the NR load flow is difficult to analyze 

mathematically, particularly when the OM modification is used, empirical results are 

used to compare the two formulations.   

A solution tolerance of 0.01 MW was used for each simulation.  For unsolvable 

systems, the solution was stopped when the optimal multiplier dropped below 0.01, 

indicating that the solution had stalled at a constant mismatch.  If any islanding occurred 

during outage studies, results were taken from the largest island. 

In the following sections, ROM (POM) refers to solution using the OM load flow 

with rectangular (polar) coordinates, and RNR (PNR) refers to solution using the 

standard NR load flow without optimal multipliers with rectangular (polar) coordinates.  

In reporting the results for the case studies, several indices are used: 

 ( ) # of iterations to solve 

with RNR (PNR)

no opt no opt
Rect PolarIC IC =

 (4.1) 

 ( ) # of iterations to solve 

with ROM (POM)

opt opt
Rect PolarIC IC =

 (4.2) 

 opt opt
opt Rect PolarIC ICΓ = −  (4.3) 

 no opt no opt
no opt Rect PolarIC ICΓ = −  (4.4) 

 no opt opt
Rect Rect RectIC ICΔ = −  (4.5) 

 no opt opt
Polar Polar PolarIC ICΔ = −  (4.6) 
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Values of optΓ ( no optΓ ) greater than zero indicate poorer performance of ROM 

(RNR) relative to POM (PNR).  Values of RectΔ  ( PolarΔ ) greater than zero indicate poorer 

performance of ROM (POM) relative to RNR (PNR). 

To examine the performance of the OM and NR solution methods under both 

coordinate systems, four systems are examined—a two bus system with a PV bus, a two 

bus system with a PQ bus, the IEEE 118-bus system, and a 10 274-bus system. 

4.1 The Two-Bus PV System 

4.1.1 System description 

First, a two-bus system is examined to look at the effects of the voltage setpoint 

equation in rectangular coordinates.  For this case, bus 2 has a voltage regulating 

generator in addition to a load, making bus 2 a voltage-regulated bus.  The line 

connecting the two buses has constant parameters of R = 0.005 p.u. and X = 0.01 p.u. for 

all cases.  A one-line diagram of this system is provided in Figure 4.1. 

 

Figure 4.1 - Oneline diagram for the two-bus (PV) system 

Because the voltage at bus 2 is regulated, there is only one equation ( ( )Polar
2 2P θ  = 

0) and one unknown ( 2θ ) for this system in polar coordinates.  The single equation in 

polar coordinates can be exactly solved analytically.  Although the polar solution is 
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trivial, this system clearly demonstrates some of the problems that can arise with ROM 

due to the voltage setpoint mismatch equation.   

4.1.2 Case studies 

In these cases the MW load at the second bus was varied from 0 to 4944 MW 

(maximum loadability) in increments of 1 MW, resulting in 4944 solvable cases.  Due to 

the trivial solution of this system with polar coordinates, only the results for ROM and 

RNR are given in Table 4.1.   

Table 4.1 - Number of iterations for two-bus (PV) solvable cases 

 

Figure 4.2 shows the relationship between loading level and RectΔ  for this system.  

The maximum value of RectΔ  for the load range shown is 7, and the minimum value is -3. 

   

Figure 4.2 - Relationship between loading at bus 2 and RectΔ  for the two-bus (PV) system 
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  While RectΔ  varied widely for these cases, ROM took more iterations in 71% of 

the cases.  Although the ROM performed poorly for the vast majority of unstressed cases, 

as the system approached unsolvability the ROM did see some performance gains over 

RNR. 

An unusual feature of Figure 4.2 is the large value of RectΔ  for load levels around 

4000 MW (about 80% of the maximum loading level of the system).   A more detailed 

look at the system mismatch equations for this load level can help to explain why.  

Figures 4.3 and 4.4 are plots of the absolute value of  the voltage setpoint mismatch 

equation (2.7) and the real power mismatch equation (2.5) at bus 2 as a function of the 

real and imaginary components of the bus 2 voltage over the ranges 20.75 1.00e≤ ≤  and 

20.95 0.4f− ≤ ≤ − .  The goal of the power flow solution methods is to determine the point  

 

Figure 4.3 - Voltage mismatch (2.7) for the two-bus (PV) system with 4000-MW load 
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Figure 4.4 - Real power mismatch (2.5) for the two-bus (PV) system with 4000-MW load 

where both mismatch equations are equal to zero.  For a load of 4000 MW this occurs at 

V2 = 0.8-0.6j.  Clearly, evaluation of (2.5) results in values several orders of magnitude 

higher than (2.7) in the region of interest.  As a result, the real power mismatch 

dominates both the shape and magnitude of the 2-norm of the total mismatch of the 

system, shown in Figure 4.5. 

Also plotted in Figure 4.5 are the solution paths taken with RNR (solid line) and 

ROM (dashed line).  Both iterations begin at a flat start of 2e = 1.0, 2f = 0.0 and end with 

2e = 0.8, 2f = -0.6.  Solving with the ROM clearly takes a longer path than solving with 

RNR.   

The ROM solution method first sets the real power mismatch to zero, then 

attempts to correct the voltage mismatch while keeping the real power mismatch very 

close to zero.  The cause of this behavior is precisely the magnitude difference mentioned 

above.  Because the real power mismatch overpowers the voltage mismatch in the 2-
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norm, the ROM solution method forces the solution to always stay very close to the 

region where the real power mismatch is zero.  In this case, because the first iteration puts 

the voltage values at bus 2 far from the correct values for the voltage setpoint equation, 

the solution must wind along the ( )Rect
2P x  = 0 curve to get to the final solution.  The tight, 

slow traversal of the ( )Rect
2P x  = 0 curve to arrive at the final solution is responsible for 

the difference in iteration counts between ROR and RNR. 

 

 

Figure 4.5 - Two-norm of the total mismatch for the two-bus (PV) system with 4000-MW load 

In summary, the voltage mismatch equation does not present much of a challenge 

for the traditional NR load flow (RNR); convergence proceeds normally.  On the other 

hand, the Newton-Raphson load flow with optimal multipliers (ROM) can encounter 

significant problems due to the vast differences of scale caused by the voltage setpoint 

equation at PV buses.   
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Heuristic methods of alleviating this problem, e.g., scaling the voltage equation 

by a fixed magnitude and disallowing small optimal multipliers, are discussed in [16] and 

[19].  Unfortunately, both of these methods have their own pitfalls.  Scaling the voltage 

equation is problematic due to the difficulty in determining exactly how much to scale 

each voltage setpoint equation in large systems, and the rejection of small optimal 

multipliers can have the undesired side effect of causing more iterations to be performed 

for unsolvable systems. 

4.2 The Two-Bus PQ System 

4.2.1 System description 

First, a simple two-bus system is examined in detail to demonstrate the behavior 

of the four solution methods.  The system has a slack bus (bus 1) and an unregulated (PQ) 

load bus (bus 2) connected by a line with X held constant at 0.01 p.u.  In all cases, initial 

conditions were taken to be the flat start values.  A one-line diagram for this system is 

provided in Figure 4.6. 

 

Figure 4.6 - One-line diagram for the two bus (PQ) system 

4.2.2 Case studies 

Cases were generated for this system by simultaneously varying three parameters: 

MW load from 0 to 2500 MW, MVar load from 0 to 2500 MVar, and R/X ratio from 0 to 
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2.  Each range of system parameters (MW, MVar, and R) was broken up into 30 points, 

giving 27 000 total cases. Of the 27 000 total cases, 13 209 were solvable and the 

remaining 13 791 cases were not solvable.  Comparison of the number of iterations 

needed to solve with the various methods is presented in Tables 4.2 and 4.3. 

Table 4.2 - Number of iterations for two-bus (PQ) solvable cases 

 

Table 4.3 - Number of iterations for two-bus (PQ) unsolvable cases 

 

POM provides significant gains over PNR, ROM, and RNR for these cases.  

Compared to PNR, POM takes an average of 51% fewer iterations for solvable cases, 

indicating significant performance gains when using the OM algorithm instead of the NR 

algorithm for these cases.  RNR and ROM also performed worse than POM, taking an 

average of 52% and 27% more iterations, respectively. 

4.2.3 ROM sensitivity to MVar loading and R/X ratio 

Some sensitivity studies were also performed to gauge the effect of MVar loading 

and R/X line ratio on the performance of ROM relative to POM.  To determine the 

effects of MVar loading, the R/X ratio of the line was held constant at 0.1 and the MW 

load at bus 2 was held constant at 1000 MW.  Under these conditions, the MVar load at 
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bus 2 was then varied from 0 MVar to 2300 MVar.  The effect of the MVar load increase 

on optΓ  can be seen in Figure 4.7.  As can be seen in the figure, the amount of MVar load 

at bus 2 and optΓ  are clearly related, with a correlation coefficient of 0.8815.  This effect 

is most likely due to the strong correlation (0.836) between the MVar load at bus 2 and 

the angle shift on the system.  As will be seen in the remaining cases, large angle shifts 

tend to negatively impact the ROM; this is indicated by higher values of optΓ . 

 

Figure 4.7 - The effect of MVar load on optΓ  for the two-bus (PQ) case 

An analysis of the effects of R/X ratio on optΓ  was also conducted by holding the 

MW load at 1000 MW and the MVar load at 1000 MW.  The R/X ratio was then varied 

from 0 to 1.472, corresponding to a variation of R from 0 to 0.01472 p.u.  A strong 

dependence exists between the R/X ratio of the line connecting buses 1 and 2 and the 

rectangular iteration count minus the polar iteration count using optimal multipliers.  This 

dependency is illustrated in Figure 4.8.  As in the MVar loading cases, angle shifts are the 
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most likely cause for the increase in optΓ ; the correlation coefficient relating R to the 

angle shift is 0.994 for these cases. 

 

Figure 4.8 - The effect of R/X ratio on optΓ  for the two-bus (PQ) case 

4.3  The IEEE 118-Bus System 

4.3.1 System description 

The IEEE 118-bus system [20] is examined next.  In order to compare the 

performance of the rectangular and polar formulations with this system, three difference 

studies were performed—all single outages, all double outages, and system-wide load 

scaling.  Flat start values of 1 0∠ °  p.u. were used as initial conditions for each case. 

4.3.2 Case studies 

4.3.2.1 Single and double outage studies 

For the single outage study, all 186 lines in the system were outaged and the 

solution results were compared.  The system was solvable for all single outages.  For the 
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double outage study, all 186 lines in the system were outaged in pairs for a total of 

17 205 cases.  One double outage case was unsolvable; in that case, the rectangular 

formulation took 5 iterations to stall and the polar formulation took 4.  A comparison of 

the number of iterations required is given in Table 4.4 for all 17 390 solvable outage 

cases. 

Table 4.4 - Number of iterations for 118-bus single and double outage cases 

 

Though the polar formulation did not see much improvement with the usage of 

optimal multipliers for the outage cases, opt
PolarIC still has the lowest average of the four 

solution methods. The most notable aspect of these results, however, is that in 98.86% of 

the outage cases studied, PNR performed better than RNR.  This is most likely due to 

high number of PV buses in this case—47 out of the 118 buses. 

4.3.2.2 Load scaling 

For the load scaling study, all real and reactive loads and generator outputs in the 

system were scaled uniformly by a multiplier.  This multiplier ranged from 0.001 to 

4.000 and was incremented by 0.001 for each case, giving a total of 4000 cases.  The 

system was solvable for scaling between 0.001 and 3.187 and was unsolvable for scaling 

between 3.188 and 4.000.  A comparison of the number of iterations required for these 

cases is summarized in Tables 4.5 and 4.6.   
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Table 4.5 - Number of iterations for solvable 118-bus load scaling cases 

 

Table 4.6 - Number of iterations for unsolvable 118-bus load scaling cases 

 

Several aspects of the results for the load scaling are quite interesting.  Most 

importantly, the average iteration count for POM is well below the other three methods, 

mirroring the results seen for the two bus PQ cases.  Also, in all of the 813 unsolvable 

cases, POM stalled in fewer iterations than ROM.  Because one of the primary purposes 

of using optimal multipliers is to quickly stall at a constant mismatch for unsolvable 

cases, the performance of the rectangular formulation for these unsolvable cases is of 

great concern. 

ROM also performed worse relative to POM as the load multiplier was increased.  

In Figure 4.9, the solid line represents solvable cases and the dashed line represents 

unsolvable cases.  Due to the large power transfers needed to satisfy the scaled load 

demand, large angle changes are occurring along with the load scaling; the norm of all 

angle changes on the system has a correlation coefficient of 0.91 with the load scaling.  

This suggests that large angle shifts are tied to the poor performance of ROM. 
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Figure 4.9 - Relation between the load scaling for the 118-bus system and optΓ  

4.4 The 10 274-Bus System 

4.4.1 Case studies 

The final system examined is a 10 274-bus case.  To test this case, the 500 lines 

carrying the most power were outaged and the solutions were examined.  Of the 500 

outage cases studied, 479 were solvable and 21 unsolvable.  Comparison of the number 

of iterations for the solvable and unsolvable cases is provided in Tables 4.7 and 4.8, 

respectively.  

Table 4.7 - Number of iterations for the solvable 10 274-bus outage cases 
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Table 4.8 - Number of iterations for the unsolvable 10 274-bus outage cases 

 

These results are simply terrible for the rectangular formulation.  In 33 of the 479 

solvable outage cases the rectangular formulation took at least 20 iterations to solve with 

the optimal multiplier.  This accounts for the very large average value of opt
RectIC  in Table 

4.7.  For the 21 unsolvable cases, optΓ  was greater than zero in all cases.  The rectangular 

formulation performed extraordinarily poorly for the unsolvable 10 274-bus cases.  For 

instance, in three of the unsolvable cases, it took over 100 iterations for the rectangular 

optimal multiplier to drop below 0.01.  Also, opt
PolarIC  has the lowest average iteration 

count of the four methods used to solve the load flow. 

As in the 118 bus load scaling cases, there are some clear dependencies between 

angle shifts and problems with ROM in this system.  Figure 4.10 provides a visual 

indicator of this dependence.  Each dot in this figure represents a single solvable outage 

case.  The correlation coefficient between the norm of the angle shifts and the differences 

in iteration counts is 0.98, based on the 479 solvable outages. 
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Figure 4.10 - Relationship between angle shifts and optΓ  for the 10 274-bus system 
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5. CONCLUSIONS 

5.1 Comments on Case Studies 

5.1.1 The effects of angle shifts 

For the systems examined in this paper, the greatest single indicator of poor 

performance with the rectangular formulation is the norm of the angle shifts for the 

system.  The most likely cause of this dependence is that a change in angle is a curve in 

the rectangular solution space rather than a straight line.  Also, as shown for the two-bus 

case in Figure 4.5, the rectangular formulation can have great difficulty in moving along 

a curve when the optimal multiplier is employed.  For the polar formulation, on the other 

hand, changing angles is a linear movement with respect to the solution variables.  This 

could help to explain why the polar formulation does not exhibit the same performance 

degradation when large angle shifts occur. 

5.1.2 Average iteration count differences 

For all three system sizes, the average value of opt
PolarIC is less than the average 

value of opt
RectIC , indicating that the polar formulation usually performs better than the 

rectangular formulation when optimal multipliers are used.  Also, in each set of cases, the 

average value of no opt
PolarIC  is less than the average value of no opt

RectIC .  This shows that the 

polar formulation routinely performs better than the rectangular formulation whether or 

not optimal multipliers are used.  Finally, the average value of no opt
PolarIC is greater than the 

average value of opt
PolarIC  for all three system sizes, indicating that the polar usually 

receives some benefit from the usage of the optimal multiplier for solvable cases.  On the 
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other hand, the rectangular formulation does worse when optimal multipliers are used for 

several of the 10 274-bus cases and for the majority of the two-bus PV cases. 

5.2 Choosing the Best Load Flow Algorithm 

The case studies indicate that any advantages of using the rectangular formulation 

are offset by greater difficulties.  These problems are particularly apparent as the system 

becomes highly stressed and unsolvable.  At its best (the two bus PQ system) ROM took 

an average of 0.5 iterations more than POM in stalling for unsolvable cases.  In the worst 

case, the 10 274-bus case, ROM took an average of 63 iterations more than POM to stall, 

including quite a few cases which took unreasonably long times (over 100 iterations) to 

stall.   

On the other hand, the polar form of the OM algorithm performed very well 

throughout all simulations.  The POM had a lower average iteration count than ROM for 

all systems, indicating that the polar coordinate system is the best choice if the OM 

algorithm is to be used.  Also, POM behaved well for unsolvable systems by stalling 

quickly and not diverging.  This behavior gives a clear advantage over both RNR and 

PNR when dealing with unsolvable systems, as the standard NR algorithm does not 

handle unsolvable systems gracefully.  POM also had a lower average iteration count 

than PNR for every set of cases (and never had a higher iteration count than PNR for any 

single case).  For these reasons, implementation of the optimal multiplier modification to 

the Newton-Raphson load flow with polar coordinates is recommended to get the fastest, 

most robust performance, regardless of system solvability or size. 
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