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Abstract- In digitally controlled DC-DC converters with a 
single voltage feedback loop, the two quantizers, namely the 
AID converter and the digital pulse-width modulator (DPWM), 
cm cause undesirable limit-cycle oscillations. I n  this paper, 
static and dynamic models that include the quantization effects 
are derived and used to explain the origins of limit-cycle 
oscillations. In the static model, existence of DC solution, which 
is a necessary no-limit-cycle condition, is examined using a 
graphical method. A concept of amplitude and offset dependent 
gain is introduced to extend the describing function method and 
derive the dynamic system model. From the static and dynamic 
models, no-limit-cycle conditions associated with AID, DPWM 
and compensator design criteria are derived. The conclusions 
are illustrated by simulation and experimental examples. 

1. INTRODUCTION 

Digitally controlled PWM converters have gained 
increased attention because of a number of potential 
advantages including lower sensitivity to parameter 
variations, programmability, reduction or elimination of 
external passive components, as well as possibilities to 
implement more advanced control, calibration or protection 
algorithms. It has been demonstrated that such advantages 
can he realized without compromising dynamic performance, 
simplicity or cost ([l], for example). 

The increased interest in digital control motivates the 
research in related design-oriented analysis and modeling 
techniques. In particular, it is well known that a digitally 
controlled PWM converter, a block diagram of which is 
shown in Fig. I ,  may exhibit undesirable limit-cycle 
oscillations because of the nonlinear elements, 
analog-to-digital (ND) and digital-to-analog (digital PWM) 
quantizers, in the feedback loop [2, 31. In general control 
theory, limit cycle has been studied extensively [4-71. For 
PWM converters, some of the quantization effects and 
no-limit-cycle conditions have been addressed in [2]. The 
purpose of this paper is to introduce more complete static and 
dynamic models that lake into account multiple nonlinearities 
in the loop (AD andDPWM quantizers), leading to a new set 
of no-limit-cycle conditions as well as AD, DPWM and 
compensator design guidelines. In the static model, discussed 
in Section 11, a graphical method is used to examine existence 
of a DC solution, which is a necessaty no-limit cycle 
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Fig. 1. Digitally controlled DC-DC switching power convertcr. 
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Fig. 2. Quantizcrcharacteristi~, 

condition. In Section 111, we extend the describing function 
[SI of a quantizer with a new concept of amplitude and offset 
dependent gains of the quantizers. A dynamic model 
including the effective quantizer gains is presented in Section 
1V. Based on the approach described in [9], the dynamic 
system model is used to predict the frequency and amplitude 
of a near-sinusoidal limit-cycle oscillation if i t  does occur. 
No-limit-cycle conditions are derived in Section V. 
Simulation and experimental results are presented in Section 
VI to illustrate the results from Sections 11-V. Finally, for the 
cases where the assumptions of the describing function 
method are not met, Section VI1 gives a conservative hound 
for the limit-cycle oscillation amplitude, while Section VI11 
summarizes the conclusions. 

11. STATIC MODEL WITH AID AND DPWM QUANTIZERS 
In the system of Fig. I ,  we assume that quantization effects 

in the digital compensator computation can be neglected, i.e., 
that sufficiently long words are used to compute the duty 
cycle command d,. Under this assumption, the digitally 
controlled converter of Fig. 1 includes two quantizers: the 
A/D converter and the DPWM, which serves as a D/A 
converter. The digital error signal e at the A/D output is 
obtained by quantization of the analog error voltage 
v, = V,e,- w, while the duty cycle d at the DPWM output is 
obtained by quantization of the duty cycle command de 
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Fig. 3. Graphical solution of the static modcl far the digitally controllcd 
convcncr of Fig. 1. for three DC compensator gains G,: (a) small G,“ 

(b) largc C,, and (c) C,, 4 m . 

The characteristic of a quantizer having a continuously 
varying input x and an outputy = Q(x) is illustrated in Fig. 2. 
The range ofx is divided into bins of width q, where q is the 
“quantization level,” or the value of the quantizer’s least 
significant bit (LSB). For x in the Ph bin, the output y equals 
the Ph discrete output value (v = kq). Based on this quantizer 
definition, we note that a quantizer with very high resolution 
(q -+ 0) behaves as a linear block having a gain of 1. 

To examine quantization effects in the system of Fig. I ,  it 
is first necessary to develop a static model and to establish 
conditions for existence of a DC solution. This task has been 
accomplished in [2,3]. In this section we give an additional 
explanation and graphical interpretation of the main results. 

The system DC solution can be obtained graphically as the 
intersection of the AID quantization characteristic, 

e = Q r i o ( v , ) .  (1) 

and the system static characteristic through the DPWM: 

(2) 
v e = V r n f - v = V  re/ -God 

=Ye/ -GOQmwu(d<) = Vrn/ -GoQowdC-e), 

where G, is the DC control-to-output gain of the converter, 
and G, is the DC gain of the compensator, d, = G,e. Since 
the quantizer output are discrete values, an intersection of the 
two curves that resides at the transition from one output level 
to another output level means that there is no DC solution to 
the system. The graphical solution is illustrated in Fig. 3 for 
three cases of the compensator gain: 

(a) if the compensator gain is relatively small, a DC 
solution may or may not exist. As an example, Fig. 3(a) 
shows a stable DC solution at point A; 

(h) for sufficiently large DC compensator gain, 

(3) r ,  -0.5q,/, 

Goq,,n 
G,, ’ 

the intersection is a point B on the 0-to-I LSB transition of 
the AID characteristic. We conclude that in this case a stable 
DC solution does not exist and the system always exhibits 
limit-cycle oscillations; 

(c) for infinitely large DC gain, i.e., when an integral 
compensator is employed, the curve corresponding to (2) 
reduces to discrete points on the v, axis. A DC solution of the 

system exists when at least one of these points resides in the 
zero error bin of AID characteristic, such as the point C in 
Fig. 3(c). Existence of a DC solution is guaranteed provided 
that the DPWM resolution is sufficiently high, i.e., provided 
that: 

G,qmw < q r i o ,  (4) 

where qDpwM and qAm are the LSB values of the DPWM and the 
A/D converter, respectively. This last conclusion is 
consistent with the basic no-limit-cycle conditions 
formulated in [2,3]. In the rest of the paper, we assume that an 
integral compensator is employed and that the static 
no-limit-cycle condition ( 5 )  is satisfied. 

Ill. DESCRIBING FUNCTIONS OF THE QUANTIZERS 
The describing function method [SI is an approximate 

analysis method for nonlinear systems, where a nonlinear 
element is replaced by an amplitude (andlor frequency) 
dependent transfer function. Successful applications of the 
describing function method rely on the assumption that the 
signals at the quantizer inputs are approximately sinusoidal. 
In this section we address the derivation of the describing 
functions for the two quantizers, the AID converter and the 
DPWM. 

Consider a quantizer having the characteristic y = Q(x) 
illustrated in Fig. 2, and suppose that the input signal is 
sinusoidal: 

x ( t )  = a COS(&), ( 5 )  

The Fourier series expansion of the outputy(t) is: 

y ( t )  = a, + uI cos(&) +. , . + a, cos(kwr) + .. ., 
The describing function N(a) of the quantizer is [8]: 

( 6 )  

a 
N(a )  =A. 

U 
(7) 

In all cases considered here, the describing function is 
independent of frequency. Therefore, we can say that the 

Fig. 4. Describing function ofa quantizer when the DC affsct is E =  0,  
i.e.. the DC valuc ofthe input sinusoidal signal matches thc midpaint ofa 

quantization bin. 
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describing function N(a) in (7) represents the effective 
amplitude-dependent gain of the quantizer. 

Figure 4 shows the textbook result for the describing 
function N(a) of a quantizer. Notice that the maximum 
effective gain of 4/n= 1.27 is obtained for a = q /&, and 
that N(a) approaches 1 for a >> q. 

We have found that the textbook definition based on ( 9 4 7 )  
is not sufficient to develop a complete dynamic model for the 
system of Fig. I .  A key new concept introduced here is that 
the describing function of a quantizer in Fig. I depends not 
only on the amplitude a of the assumed sinusoidal input 
signal, but also on the input signal DC offset &with respect to 
the mid-point of a quantization bin. Assuming that 

(8) 

the Fourier series expansion of the output f i t )  has the same 
form as in (6), and the amplitude and &er dependent 
describing function N(a, E) is again defined by (7). 

It is important to note that the amplitude and offset 
dependent gain of a quantizer can be significantly greater 
than 1 as the offset E approaches q/2. In the worst case, 
E =  q/2, the input sinusoidal signal is centered at the 
transition point of the quantizer. Figure 5 shows an example 
of the input and output waveforms in this situation, for a 
quantizer with q = I. Since the input signal with an arbitrarily 
small amplitude can produce the output with a non-zero 
amplitude, the quantizer with the input signal having the 
offset E =  q/2 can exhibit an infinitely large gain. Figure 6 
shows the describing functions N(a, E) for several different 
values of the offset E. 

Let us consider the A/D converter. Because of the assumed 
integral action (i.e. infinite DC gain) of the compensator, the 
steady-state DC value of the AID output must be equal to 
zero. Therefore, if a sinusoidal limit-cycle oscillation exists 
at the A/D input, this oscillation must have a zero DC offset, 
E , , ~  = 0. We conclude that the traditional zero-offset 
describing function can be used to model the AID converter. 
The offset eDPwM at the input of the DPWM quantizer, 
however, can be arbitrav,  and we have to include the 
possibility of the worst-case offset cDPwM = qDpw,I/L in the 
model. The observation that the DPWM can contribute an 
effective gain much larger than 1 has important consequences 
in the construction of the system dynamic model and 
derivation of additional no-limit-cycle conditions. 

x ( t )  = E + acos(wt), 

Iv. DYNAMIC MODEL AND EXISTENCE OF SINUSOIDAL 
LIMIT-CYCLE OSCILLATIONS 

Denote the converter power stage transfer function as 
G&), and the continuous-time equivalent of the 
compensator transfer function as Q(s). Figure 7 shows a 
dynamic model for the system of Fig. 1 where the two 
quantizers are replaced by the amplitude and offset 
dependent effective gains. Using the model of Fig. 7, and the 
describing functions of Section 111, existence, frequency and 
amplitude of a sinusoidal limit-cycle oscillation can be 
obtained using the approach described in [5]. 

Let T,(s) be the linear part ofthe loop gain, which does not 

. 

' 0  2 4 6 8 10 

Fig. 5. Small amplitude sinusoidal signal becomes square wave signal 
with much biggcramplitude when the DC offset softhe input sinusoidal 
signal matchcs thc transition p i n t  (0.5q) bctwccn hvo quantization bins. 

-0 I 

Fig. 6. Describing function o f a  quantizer for several different values of 
the offsct 6 

include the quantizers, 

r L ( s ) =  G,(s)G,(s) (9) 

As discussed in Section Ill, the describing functions of the 
quantizers in Fig. 1 are independent of frequency, and do not 
introduce a phase shift between the input sinusoidal signal 
and the fundamental of the output signal. Therefore, from 
linear system theory, if a limit-cycle oscillation exists, the 
oscillation frequency5 is such that: 

LT, (jw, ) = -180' (10) 

Suppose that the signal v, at the input of the AID is a. 

Switching converter 
1 

Fig. I .  Dynamic system model 
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Fig. 8. Sirnumulink modcl. 

Then, af fhe f’eqzrency f,, the magnitude of the 
amplitudeloffset-dependent system loop gain T(a,&DpwM) can 
be found as follows: 

v d d  e 
d de e ve 

T(a,&,, ) = 

(13) 

a near-sinusoidal limit-cycle oscillation of amplitude a, and 
frequencyf, will occur in the system. Equations (IO) and (12) 
are the standard oscillation conditions, while (13) is related to 
the stability of the oscillation. If, for example, the amplitude a 
drops below a,, (13) implies that the loop-gain magnitude 
increases above 1, which implies that a will increase towards 
the equilibrium a = a,. 

V. NO-LIMIT-CYCLE CONDITIONS AND DESIGN 
GUIDELWES 

The models of Section 11, 111 and 1V can he used to 
formulate no-limit-cycle conditions and design guidelines 
related to the selection of the A D  and DPWM resolutions 
and the compensator design. 

A .  Stafic condifion 
A necessary no-limit-cycle condition is that a DC solution 

exists. According to the discussion in Section 11, a DC 
solution is guaranteed to exist provided that an integral 
compensator is employed, and that the DPWM resolution is 
sufficiently high, 

where Go is the DC duty-cycle-to-output gain and a can be as 
high as 1. In practice, to ensure a design margin, a smaller a 
is recommended (a = 0.5 has been suggested in [2]). 

~ 
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B. Dynamic condition 
A dynamic no-limit-cycle condition follows from the 

discussion in Sections 111 and IV. Letf, be a frequency where 
(1  0) is satisfied, i e . ,  a frequency where the phase response of 
the linear part of the system loop gain equals -180O. The 
dynamic no-limit-cycle condition is: 

for all a > 4A/d2 and 0 < &D~wM< qDpwd2, where a is the 
amplitude of the signal v, at the A/D input, and Ra, sDPwM) is 
the magnitude of the amplitude/offset-dependent system loop 
gain computed from ( I  1). 

The condition (15) is related to the gain nlargin of the 
linear part of the system. For large signal amplitude 
a >> qAfO, the system loop gain magnitude (1 1) gives the gain 
margin GMr of the linear part of the system: 

Note that the condition (15) requires that the linear part of the 
system is stable, i.e., that the gain margin GM, is positive. In 
addition, the condition (15) captures gain effects of the 
quantizers in terms of the amplitude a and the offset E ~ ~ ~ M .  

The general dynamic no-limit-cycle condition (15) leads to 
two simple no-limit-cycle conditions in terms of the A/D and 
DPWM resolutions, and the converter and controller 
responses. 

E. 1 The worst-case (infinite) DPWM gain, which occurs for 
E~~~~ = qDpwd2, is canceled by the zero gain of the A/D for 
signal amplitudes a < qA/d2: 

Very large effective DPWM gain is a result of a very small 
aniplitude signal at the DPWM input around the worst-case 
offset zDPw~ = qDpwd2. In this case, the DPWM output is a 
square wave of amplitude qDpwM, and (2/n)qoPwM is the 
amplitude of the corresponding fundamental at f,. The 
dynamic condition B.1 (Eq. (17)) is the condition that the 
resulting amplitude a at the N D  input is smaller than qa,d2. 

8.2 The gain margin GM, of the linear part of the system is 
suficiently high: 

If a signal at the DPWM output oscillates between only two 
adjacent quantization levels, the no-limit-cycle condition E. 1 
applies. If the DPWM output steps over three or more levels, 
the effective DPWM gain cannot be greater than 4/n, for any 
zDPwM. Similarly, the effective A/D gain cannut be greater 
than 4/n, as discussed in Section 111. Therefore, under the 
assumption that the signal at the DPWM output spans over 
more than two quantization levels, the combined DPWM and 
AID gain cannot exceed (4/7r)’ = 1.62, which gives the 
no-limit-cycle condition 8.2 (Eq. (18)). 
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Together, the conditions B.l and B.2 imply the general 
dynamic no-limit-cycle condition (15). These conditions 
have not been reported earlier. 

Note that the conditions A and B. 1 clearly indicate the need 
for a high-resolution DPWM, while the conditions A and 8 . 2  
have direct implications on the compensator design - the 
compensator must include an integral action (as reported 
earlier in [2]) ,  and must result in sufficiently large gain 
margin of the linear part. The condition B.l originates from 
the fact that the DPWM can provide large effective gain, but 
the realization of the high gain depends on the DC offset and 
the amplitude of the signal at the DPWM input, which do not 
always occur. As a result, not satisfying the no-limit-cycle 
condition B.l does not necessarily lead to a persistent limit 
cycle oscillation as long as there is a DC solution to the 
system. 

The relative importance of the no-limit-cycle conditions 
established in this section depends on the particular 
application. In all cases, to avoid limit-cycle oscillations, the 
static condition A (Eq. (14)) must he satisfied. In applications 
with a relatively fast controller, the frequencyf, in (10) is 
relatively high, and the condition B.1 (Eq. (17)) is likely to 
he satisfied whenever the static condition A is met. In this 
case, in addition to the condition A,  the condition 8 . 2  must be 
taken into account. However, this is not the case in 
applications with a relatively slow integral compensator, 
where the condition E. 1 can he very important, as illustrated 
in the next section. 

VI. SIMULATION AND EXPERIMENTAL RESULTS 

In this section, we present several examples to illustrate the 
results of Sections 11-V. 

A. 
Sirnulink model of a digitally controlled buck converter 

used in the simulation examples is shown in Fig. 8. The 
converter parameters are: L = 10 pH, C =  I O  pF, R = 1 Q, 
Vi"= 5 V ,  V,, = 2.5 V,A = I MHz. An integral discrete-time 
compensator is applied, 

Simulation example: no-limit-cycle condition B.2 

K ,  G, ( 2 )  = - 
I - 2 - l  

The integral compensator provides a phase lag of 90'. 
Therefore, the kequencyf, where (IO) is met is 

With K, = 0.016, the gain margin of the linear part is very 
small, hut the system without quantizers is stable. When an 
Afl) quantizer with qAID = 0.2 V is added, the system violates 
the condition B.2, and a limit cycle oscillation occurs, even 
when qDpwM is still very small. Signal waveforms v, at the 
AID input and e at the AD output are shown in Fig. 9. The 
A/D input signal amplitude is around O.75qAtD, which 
corresponds to the effective AID gain of approximately I .2 in 
Fig. 4. The oscillation frequency obtained by simulation is 

! t b l  
6550 6600 6650 

Fig. 9. Steady-state waveforms v, at the AID input and e at thc A/D 
outpul ~n thc examplc of Section VIA. 

very close tof, 

B. 
In this example, the Simulink model of Fig. 8 is applied 

with the following parameters for the buck converter: 
L = I O p H ,  C=lOpF, R = 5 Q  V,.=5V,  Vref=2.505V,  
f ,  = I MHz. The integral discrete-time compensator (19) is 
used, with K, = 0.0002. The AID quantizer has quo = 0.02 V, 
and the DPWM quantizer has qDpwM= 0.002. The frequency 
f ,  is again given by (20). The gain margin of the linear part is 
GM, = 26 dB. This system satisfies all no-limit-cycle 
conditions in [2] .  Figure I O  shows that a limit-cycle 
oscillation occurs as a result of violation of the condition B. 1: 
the DPWM input and output waveforms clearly illustrate the 
large effective gain of the DPWM. If the DPWM 
quantization level is reduced to qDpwM= 0.0005, which 
satisfies the condition B.l ,  the limit cycle oscillation 
disappears. It is of interest to examine the plots of the 
magnitude loop gain T(a, sDpwM) computed from ( I  I )  as a 
function of the signal amplitude 0, for the worst-case offset 
sDpwM = qDpwn/2. The results are shown in Fig. 1 I for 
qDpwn,= 0.002, and for qDpwM= 0.0005. For qDpwM= 0.002, 
there is an amplitude o = a, = 0.032 V such that ( 1 2 )  and (13) 
are met. This oscillation amplitude predicted by the dynamic 
model of Section 1V is very close to the v, signal amplitude 
obtained by simulation as shown in Fig. IO. For 
qDpwn, = 0.0005, r(a, .sDPwM) < 1 for all a, the no-limit cycle 
condition (15) is met, and no limit cycle oscillations occur. 

C. 
An experiment similar to the simulation example of 

Section B is performed using the experimental digitally 
controlled buck converter shown in Fig. 12 [I I ] .  The buck 
converter parameters are L = I O  pH, C = 10 pF, 
VI. = 3.313 V ,  V,<, = 1.3 V, = 1 MHz. Note that the AID 
converter consists of only two comparators. The AID 
converter characteristic is shown in Fig. 13(a), together with 
the corresponding describing function in Fig. 13(h). Instead 
of the fast PID compensator described in [ 1 I], the controller 
is programmed to operate as a slow integral compensator ( I  9), 
with K, = 1.26 x IO". The 6-bit feed-forward DPWM with 

Simulafion example: no-limit-cycle condition B. I 

Experiment: no-limit-cycle condition B. 1 
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Fig. IO.  Top: wavcforms v. and e bcforc and atleer A/D quantization. 
Bottom: duty-cycle command d, at the DPWM input, and thc quantized 

duty-cyclc command din the example of Section VI B. 

additional 3 bits added by duty-cycle dithering results in 
V," qDpwM z 5 mV. The A/D quantization level is 
q,,,D -5. 50 mV. Because of the high switching frequency, the 
duty-cycle dithering contributes a very small additional 
ripple in the output voltage, well within the zero-enor bin of 
the AID converter. As in the simulation examples of Sections 
A and 5, the frequencyf, given by (20) is 15.9 Idlz. 

Since ~~G,,dj6&)~~ = V,.Q, where Q % R m  (neglecting 
losses), the gain margin of the linear part of the system 
depends on the load resistance R. For example, for a load of 
R = 1 R, GM, -5.27.6 dB. We tested a range of load transient 
responses. Figure 14 shows the waveforms for the case when 
the load current changes periodically from 160mA to 39OmA. 
which corresponds to a load resistance change from 8 Q to 
3.3 R, respectively. ForR = 8 R, the no-limit-cycle condition 
B.1 is not satisfied, and near-sinusoidal limit cycle 
oscillations at the frequency of approximately f, can be 
observed in the output voltage and the A D  signals x and y .  
For R = 3.3 R, Q is reduced and the no-limit-cycle condition 
B.l is satisfied. For this load, no limit cycle oscillations 
occur, as illustrated by the waveforms of Fig. 14. 

VII. NON-SINUSOIDAL LIMIT CYCLING 

The dynamic model of Sections 111 and IV, and the 
no-limit-cycle conditions of Section V.B are based on the 
assumption of near-sinusoidal limit cycle oscillation. Under 
this assumption, if a limit cycle exists, the oscillation 

Fig. I I .  Magnitude loop gain ?(a, E ~ ~ ~ ~ )  at6  for huo DPWM 
quantization levels qoprM in the example of Section V1.B. 

Fig. 12. Experimental digitally-controlled I MHz buck convcncr [I I]. 

(8)  (b) 

Fig. 13. Chmcteistic (a) and the describing function (b) ofthe AID 
converter in Fig. 12. 

amplitude and frequency can be inferred from the model in 
Section IV, with illustrative examples shown in Section V. It 
is important to note that even when all conditions of 
Section V are satisfied, non-sinusoidal limit-cycle 
oscillations may still occur, especially if a in (14) is close to 
I ,  or if the gain margin is close to the limit in (18). In such 
cases, the DPWM output may swing between two adjacent 
levels, but with a more complicated oscillation pattern. It is 
then of interest to find a bound on the limit cycle oscillation 
amplitude in the output voltage. For an arbitrary signal 
pattern consisting oftwo adjacent DPWM levels, a bound for 
the signal amplitude at the output can be found from linear 
system theory as the induced L,norm, which can be 
computed as the L, norm of the system impulse 
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Fig. 14. Experimental waveform in the example of Section V1.C 
Chl: load current im, [2OOmA/div], ChZ: acsoupled output voltage Y~, , .  

C h 3  AID comparator outputy, C h 4  A/D comparator output x. 

response [IO]. As an example, for a buck converter having 
the control-to-outvut transfer function: 

. .  

the impulse response of which is g(i), we have the following 
hound 

Assuming, as has been observed in simulations and 
experiments, that the DPWM output signal has the amplitude 
equal to qDPwM, we have a conservative hound for the 
amplitude of the limit-cycle oscillation at the output: 

max(?imitLcycd < ]IG~dllm+m 9DPWM 

. .  

In practice, the result (23) can he used to find the 
worst-case effect of the oscillation on the output voltage, 
regardless of the origin of the oscillation. It should he noted 
that (23) is a conservative result. We note again the 
importance of a high-resolution DPWM having small 
quantization level qDpwM for practical realization of digitally 
controlled switching power converters. A comprehensive 
survey of high-frequency, high-resolution DPWM 
realizations can be found in [12]. 

VIII. CONCLUSIONS 
This paper presents static and dynamic models of digitally 

controlled PWM converters including quantization effects. 
The models include two quantizers, an A D  converter and a 
digital PWM (DPWM). In the static model, a graphical 
method is used to conclude that the existence of a DC 
solution, which is a necessary no-limit-cycle condition, can 
be guaranteed if the compensator includes integral action and 

if the DPWM resolution is sufficiently high. When the DC 
loop gain is large hut not infinite, no DC solution exists and a 
limit cycle oscillation will happen. A dynamic model 
including quantization effects is derived using the describing 
function method. A concept of amplitude and offset 
dependent gain is introduced to complete the quantizer 
models. Under the assumption of sinusoidal signals, the 
dynamic system model can he used to predict the oscillation 
frequency and amplitude, if a limit cycle exists, and to 
establish no-limit-cycle conditions in terms of the AID 
resolution, DPWM resolution, and the gain margin. For cases 
when the sinusoidal signal approximation is not met, we have 
found hounds for the amplitude of oscillations if a limit cycle 
exists. 

The no-limit-cycle conditions and the amplitude hounds 
results point to the importance of high-resolution DPWM 
designs in practical realizations of digitally controlled 
switching power converters. 
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