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Abstract— This paper introduces a new topology that combines 

a capacitive divider and an interleaved buck to reduce the 

volume of multi-phase step-down converters. The size reduction 

is obtained with a low penalty in conduction losses, input filter 

size, and controller complexity. At heavy loads, the converter 

efficiency is comparable to that of a conventional buck and at 

light to medium loads it is improved. The volume reduction is 

obtained by utilizing the inductors of the buck stage to regulate 

the tap voltages of the capacitive divider. This eliminates a bulky 

energy transfer capacitor existing in other switch capacitor (SC) 

circuits, reduces the number of switches in the conduction path, 

and simplifies control of the converter. 

Experimental results obtained with a 7V-to-1V, 10A, 1 MHz 

prototype demonstrate that the merged capacitor converter has 

15% smaller inductor, 13% reduction in output capacitor value 

and up to 35% reduction in power losses, and 15% faster 

transient response than a time-optimal controlled buck. 

I. INTRODUCTION 

In portable devices, such as tablet computers and gaming 
consoles among the main targets are volume reduction of dc-
dc converters [1], [2] and improvements in their efficiency. In 
these systems the reactive components of the power supplies 
often occupy more than 25% of the overall volume and are 
among the largest contributors to the overall device weight 
[3]. Those supplies are usually required to step down the 
voltage of a single or two serially connected battery cells to a 
1V or even lower voltage [4], for digital loads. Due to the 
quickly changing nature of the load, which often depends on 
the software application, the supplies are also required to have 
a high efficiency over the full range of operation and fast 
dynamic response.  

Most of the converters used for the targeted applications 
are single-stage multi-phase buck topologies [5]. Recent 
publications [5]-[7] show that a cascade connection of a 
switch-capacitor (SC) and a buck converter results in a 
significant increase in power density. Those 2-stage structures 
result in a significant reduction of the overall volume but at 
the same price introduce a relatively large number of extra 
switches in the conduction path. As a consequence, the 
conduction losses of those topologies are often preventing 
their use in higher current applications. In addition, the 

cascaded topologies also use separate controllers for each of 
the two stages increasing hardware complexity.  

The main goal of this paper is to introduce a new merged 
switch-capacitor multi-phase switch-capacitor buck converter 
topology shown in Fig.1 that further reduces the volume of the 
step-down converters with a lower penalty in conduction 
losses compared to other 2-stage solutions [5]-[7]. At heavy 
loads, the proposed structure has approximately the same 
efficiency as the conventional interleaved buck and at light to 
medium loads the efficiency is improved. Furthermore, the 
merged topology has a larger inductor current slew rate 
resulting in a significantly faster transient response. This 
converter operates on the same principle as the single-phase 
topology consisting of a capacitive divider and a downstream 
buck converter introduced in [8]. There the switches of both 
stages are shared to minimize conduction losses and the buck 
inductor is used for the capacitor voltage balancing 
eliminating a bulky intermediate capacitor existing in other 
SC-based solutions [5]-[7]. An extension of the single-phase 
system to a multi phase operation is not a straightforward task. 
Mostly, due to a strong interaction between the upstream and 
the downstream stage as well as due to the phase interactions. 
Hence, a simple parallel connection of the buck stages for the 
topology shown in [8] cannot be used.  The multi-phase 
topology of Fig.1 shows a solution for those problems 
allowing for a significant extension of the power rating.   
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Figure 1. Block diagram of a 2-phase merged switch capacitor buck (MSCB) 

converter and its digital controller.   
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II. PRINCIPLE OF OPERATION AND SYSTEM DESCRIPTION  

The converter introduced here operates on the same principle 

as the other 2-stage solutions [5]-[8]. Namely, the input 

battery voltage Vbatt is reduced with a front-stage switch-

capacitor converter and supplied to the downstream buck 

stage. The effect of this input voltage reduction can be 

quantitatively described through the expression for the 

inductor current ripple of a buck converter [9]  
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where Vout is the output voltage, L is the inductance value, 

and fsw is the converter switching frequency. It can be seen 

that a decrease of the Vout/Vin ratio allows for reduction of the 

L without paying a penalty in the inductor and output 

capacitor ripple values. In addition to allowing for filter 

minimization, the input voltage reduction also minimizes 

switching losses of the buck stage, which are proportional to 

the power transistor switching voltages [9].   

In the system of Fig.1, the reduction of the input voltage for 

the downstream buck converter is achieved by modifying the 

input filter and replacing its capacitor with a switch capacitor 

circuit of an approximately the same volume. This switch-

capacitor circuit acts as a capacitive divider providing two 

input voltages for the buck stage vin1(t) and vin2(t), which 

values are approximately equal to a half of the input battery 

voltage Vbatt. Since the volume of a capacitor depends on its 

energy storage capacity [10], i.e. We = ½CV2, the total 

volume of the divider capacitors is no larger than that of the 

conventional input filter capacitor, even though their 

individual capacitances are larger.  Operation of the converter 

is controlled with a single voltage mode digital pulse-width 

modulation controller where, as will be described in this 

section, the regulation of the attenuator tap voltages vin1(t) 

and vin2(t) is provided through an inherent feedback loop 

existing in this topology. For small values of error signal e[n] 

the converter operates in steady-state mode. The output 

voltage is regulated with a PID regulator, digital pulse width 

modulator (DPWM) [11], [12], and a switch selector that sets 

the transistor switching sequence as described below.  

 

A.  Steady-state operation and elimination of the output 

capacitor of the SC stage    

The operating modes of the attenuator, i.e. SC stage, and the 

key converter waveforms are shown in Figs.2 and 3. The 

converter operates such that the upper buck phase of Fig.1 

(controlled by Q8 and Q9) is always supplied by the voltage 

across Cin1, i.e. vin1(t), and the lower buck phases (controlled 

by Q6 and Q7) by vin2(t). The SC stage operates in 

synchronization with the buck and, in each switching cycle, it 

goes through two modes, shown in Fig.2. In mode A it 

charges the cascade connection of Cin1 and Cin2, through a 

quasi resonant circuit formed of a small capacitor Cr, a 

parasitic pcb inductor Lp, and switches Q1 and Q3.In this 

mode transistors Q2, Q5 and Q8 are open and the upper phase 

of the buck converter operates in synchronous rectification 

mode, i.e. the transistor Q9 is turned on. During this time the 

lower buck phase can be in any of the two switching states. 

As described later, the quasi-resonant switch is used to obtain 

zero current switching eliminating switching losses of 

switches Q1 and Q3. 
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Figure 2.  Operating modes of the capacitive attenuator. 
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Figure 3. Key waveforms of the MSCB converter. 
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In mode B the switch control logic changes the circuit 

configuration such that Cin1 is only connected to the upper 

phase and Cin2 to the lower one. During this mode the buck 

phases can be in either of the two switching states and 

discharge the capacitors during the times when their main 

switches (Q6 and Q8) are on, through the inductors of the 

downstream stages. 

 

A.1.    Inherent centre tap voltage regulation 

The previously described operation inherently provides 

regulation of the SC tap voltages, eliminating the need for a 

relatively large charge-balancing output capacitor existing in 

the front stages of other SC based 2-stage solutions [5]-[7].  

The voltage regulation as well as the current sharing between 

the phases can be described through an analysis of the dc 

equivalent circuit of the converter shown in Fig.4. In this case 

the source Icharge represents the average current provided to 

the divider over one switching cycle, i.e. during mode A 

(Fig.2). The equivalent resistances of the phases modeling the 

losses are Req1 and Req2. To simplify explanation it is assumed 

that both phases operate with the same effective duty ratio D.  

Capacitor charge balance equations [10] for the input 

capacitors result in     

 echLL IDIDI arg21   

where IL1 and IL2 are dc values of the phase inductor currents. 

By using (2) and solving the circuit of Fig.4, the following 

expression for the difference in the tap capacitor voltages can 

be obtained: 

   DIRRVV Leqeqcc /
2/12121   

These equations show that the current sharing is achieved and 

that for the targeted applications where Req1-Req2 is relatively 

small, the tap voltages in steady state remain approximately 

the same. The equations also show that the current and 

voltage sharing is not affected by the mismatches in the 

inductor and capacitor values. In other words, an inherent 

feedback for maintaining the same currents in both phases 

exists. The phase with a large equivalent resistance will also 

have a higher tap voltage so that its current is the same as in 

the other one.  

 Taking duty ratio mismatches into account, (2) and (3) will 

be transformed into (4) and (5). 
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where Deq1 and Deq2 represent effective duty ratios of upper 

and lower buck phases respectively. As shown by (4), the 

inductor currents will only be affected by the mismatch in the 

duty ratios proportionally.  

 

A.2.   Soft-switching  

The SC converters often suffer from excessive switching 

losses due to direct energy transfer between the capacitors 

[7]. To eliminate this problem, a quasi-resonant switch is 

used. The switch is formed by a parasitic inductance of the 

pcb, Lp, and a small capacitor Cr in series with Cin1 and Cin2 

(Fig.2b), and transistors Q1 and Q3. The resonant circuit 

parameters are chosen such that the charging of Cin1 and Cin2 

is completed over the duration of mode A, as shown in Fig.3.  

 

This period can be expressed as  


rpchs CLTT  , 

and should not exceed the conduction time of the 

synchronous rectifier, Q9, to maintain the low voltage at the 

input of the upper buck phase.  

 

B.  Transient mode 

Sudden load changes are captured by the transient detector of 

Fig.1. It triggers the minimum deviation block that 

implements a minimum deviation control algorithm [13]. 

During large light-to-heavy load transients this block also 

changes operation of the switch control logic, such that the 

capacitive divider is bypassed and the equivalent circuit of 

Fig.5 is formed. In this mode the inductor slew rate is 

increased because the full battery voltage supplies the buck 

phases.   
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   Figure 4. Approximate Dc equivalent circuit of the converter. 
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    Table I.  Filter components parameters. 

Parameter Lf Cr Lp Cin2/Cin1 L1 , L2 Cout 

MSCB 100nH 1.6 µF 3n 18.8µF 400nH 35µF 

Buck 100nH - - 18.8µF 470nH 40µF 

 

 

III. PRACTICAL IMPLEMENTATION 

A. Output filter reduction 

By looking at (1) it can be seen that, in comparison with the 

conventional buck, the 2-stage converter topology allows the 

output filter inductor to be reduced by the ratio (Vbatt-

2Vout)/(Vbatt-Vout), where Vbatt is the input battery voltage. 

Theoretically, this reduction results in an equivalent 

improvement of the inductor current slew rate and, 

consequently, proportional minimization of the output 

capacitor. However, as shown in [8], the linearly proportional 

reduction is not feasible in practice, due to the finite delays of 

the control circuit.  

 

B. Conduction losses and switch selection  

The elimination of the energy storage capacitor of the 

SC stage also brings another main benefit of this circuit 

compared to other SC-based solutions. Since the extra 

switches needed for the control of energy storage 

capacitor are eliminated, the conduction losses are 

reduced.  This converter has just a minor increase in 

conduction losses compared to the conventional single-

stage buck. When Q7 and/or Q9 are turned on, the 

downstream stage has the same conduction losses as 

the conventional buck and only one low resistance 

switch is added during the other portion of the 

switching interval. Also, since the switches Q1 and Q3 

conduct relatively small current, their conduction losses 

are relatively small. It can be seen that the new 

topology introduces only one extra transistor during the 

“on states” of the buck phases and does not increase the 

conduction losses during the “off” states. As seen from 

Fig.2 and Fig.5, the blocking voltage of the extra 

transistors (Q2 and Q4) is Vbatt/2. Hence, their Ron 

resistances can be smaller than that of the main 

switches Q8 and Q6 bringing a small extra contribution 

to the conduction losses. In comparison with most other 

two stage solutions [5]-[7] this penalty in conduction 

losses is minor. 

 

IV. EXPERIMENTAL SYSTEM AND RESULTS 

To validate the advantages of the introduced 2-stage 

converter topology a 7V-to-1V, 10A, 1 MHz experimental 

prototype was built and its performance compared to that of 

an equivalent interleaved buck.  

The output filters of the both converters are selected so that 

current ripples are the same as well as the output voltage 

deviation during zero to maximum current load transients. In 

both cases an optimal controller [13], [14] resulting in 

theoretically minimum possible voltage deviation is used. 

Also, the input filters are designed such that the input current 

ripple is the same.  

The parameters of both converters are shown in Table I.  It 

can be seen that the new topology reduces the output filter 

inductor by 15% and the output capacitor by 13%. The 

operation of SC stage and gating signals during steady-state 

can be observed in Fig. 7.  

The light-to-heavy transient responses are compared for 2 A 

to 8 A load steps (Figs.8 and 9). As shown, the 2-stage 

converter has the same voltage deviation and about 15% 

faster settling time than the buck. It can also be seen that, as 

predicted by (2), the current is shared equally between the 

buck phases during steady state. The efficiency results of 

both converters are shown in Fig.9. The 2-stage topology 

improves efficiency by up to 9% at light loads (reduces losses 

by 35%) and by 3% for medium loads, due to reduced 

switching losses.  
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operation.  
 

Figure 6. Equivalent circuits of the top and bottom phase of the 
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V. CONCLUSIONS 

A 2-stage digitally controlled converter that merges a switch 

capacitor converter (SC) with an interleaved buck is 

introduced. Through utilization of buck inductors for SC tap 

balancing, the new converter eliminates a bulky energy 

transfer capacitor existing in other 2-stage SC solution 

reducing conduction losses and controller complexity. To 

minimize switching losses of the SC a quasi resonant switch 

is employed. At heavy loads the efficiency of the MSCB is 

comparable to the conventional buck and at light and medium 

loads it is improved. The effectiveness of the MSCB is 

verified experimentally by comparison with a conventional 

buck, where the improvements in efficiency, filter volume, 

and dynamic response are demonstrated.      
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